Skip to main content
Log in

Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi

Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Survival of Pseudomonas sp. SF4c and Pseudomonas sp. SF10b (two plant-growth-promoting bacteria isolated from wheat rhizosphere) was investigated in microcosms. Spontaneous rifampicin-resistant mutants derived from these strains (showing both growth rate and viability comparable to the wild-strains) were used to monitor the strains in bulk soil and wheat rhizosphere. Studies were carried out for 60 days in pots containing non-sterile fertilized or non-fertilized soil. The number of viable cells of both mutant strains declined during the first days but then became established in the wheat rhizosphere at an appropriate cell density in both kinds of soil. Survival of the strains was better in the rhizosphere than in the bulk soil. Finally, the antagonism of Pseudomonas spp. against phytopatogenic fungi was evaluated in vitro. Both strains inhibited the mycelial growth (or the resistance structures) of some of the phytopathogenic fungi tested, though variation in this antagonism was observed in different media. This inhibition could be due to the production of extracellular enzymes, hydrogen cyanide or siderophores, signifying that these microorganisms might be applied in agriculture to minimize the utilization of chemical pesticides and fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altschul S, Stephen F, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Costa R, Gomes NCM, Peixoto RS, Rumjanek N, Berg G, Mendonça-Hagler LCS, Smalla K (2006) Diversity and antagonistic potential of Pseudomonas spp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biol Biochem 38:2434–2447

    Article  CAS  Google Scholar 

  • De Souza JT, Raaijmakers JM (2003) Polymorphisms whithin the prnD and pltC genes from pyrrolnitrin and pyoluteorin- producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34

    PubMed  Google Scholar 

  • Duquenne P, Chenu C, Richard G, Catroux G (1999) Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm. FEMS Microbiol Ecol 29:331–339

    Article  CAS  Google Scholar 

  • Edwards SG (2004) Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol Lett 153:29–35

    Article  CAS  PubMed  Google Scholar 

  • Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fischer SE, Fischer SI, Magris S, Mori G (2007) Isolation and charaterization of bacteria from rhizosphere wheat. World J Microbiol Biotechnol 23:895–903

    Article  CAS  Google Scholar 

  • Glick B (1995) Review: the enhancement of plant gowth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Hankin L, Anagnostakis SL (1977) Solid media containing carboxymethylcellulose to detect CX cellulose activity of micro-organisms. J Gen Microbiol 98:109–115

    CAS  PubMed  Google Scholar 

  • Johansen A, Knudsen IMB, Binnerup SJ, Winding A, Johansen JE, Jensen LE, Andersen KS, Svenning MM, Bonde TA (2005) Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: a greenhouse assessment. Soil Biol Biochem 37:2225–2239

    Article  CAS  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Horticult 114:16–20

    Article  CAS  Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: A suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  • Li S, Jochum C, Yu F, Zaleta-Rivera K, Du L, Harris S, Yuen Y (2008) An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology 98:695–701

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • McSpadden GBB, Gutierrez LJ, Joshi R, Edema R, Lutton E (2005) Distribution and Biocontrol Potential of phlD + Pseudomonads in Corn and Soybean Fields. Phytopathology 95:715–724

    Article  CAS  Google Scholar 

  • Molina L, Ramos C, Duque E, Ronchel MC, García JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  CAS  Google Scholar 

  • Nautiyal CS (1997) Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiol Ecol 23:145–158

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384

    Article  CAS  Google Scholar 

  • Pattern CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shimahara K, Takiguchi Y (1988) Preparation of crustacean chitin. In: Wood WA, Kellog ST (eds) Methods in enzymology. Academic Press, San Diego, CA, pp 417–423

    Google Scholar 

  • Sneh B, Lee B, Akira O (1991) Identification of Rhizoctonia Species. The American Phytophatological Society, St. Paul, Minnesota, USA, pp 129

    Google Scholar 

  • Svercel M, Duffy B, Défago G (2007) PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp. J Microbiol Meth 70:209–213

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • van Elsas JD, van Overbeek LS (1993) Bacterial responses to soil stimuli. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, pp 55–79

    Google Scholar 

  • van Overbeek L, van Veen J, van Elsas J (1997) Induced reporter gene activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat. Appl Environ Microbiol 63:1965–1973

    PubMed  Google Scholar 

  • van Veen J, van Overbeek L, van Elsas J (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61(2):121–135

    PubMed  Google Scholar 

  • Walsh GA, Murphy RA, Killeen GF, Headon DR, Power RF (1995) Technical note: detection and quantification of supplemental fungal beta-glucanase activity in animal feed. J Anim Sci 73:1074–1076

    PubMed  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Whipps JM (1997) Ecological considerations involved in commercial development of biological control agents for soil-borne diseases. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 525–546

    Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Widmer F, Seidler RJ, Gillevet PM, Watrud LS, Di Giovanni GD (1998) A highly selective pcr protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl Environ Microbiol 64:2545–2553

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank J. Raaijmakers and M. Espinosa-Urgel for providing reference strains of Pseudomonas and M. Colombo (INTA) for the strain Rhizoctonia. We are also grateful to Dr. Donald F. Haggerty, a retired career investigator and native English speaker, for editing the final version of the manuscript. S Fischer and E Jofré are members of the Scientific Researcher Career-CONICET (National Council of Technological Researchs). P. Cordero is recipient of a doctoral fellowship from CONICET-Agencia Córdoba Ciencia. This research was supported by SECYT of the Universidad Nacional de Río Cuarto, Picto-Agencia Nacional de Promoción Científica y Tecnológica (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia E. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S.E., Jofré, E.C., Cordero, P.V. et al. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek 97, 241–251 (2010). https://doi.org/10.1007/s10482-009-9405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9405-9

Keywords

Navigation