Antonie van Leeuwenhoek

, Volume 96, Issue 4, pp 515–526 | Cite as

Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)

  • K. W. Finster
  • C. S. Cockell
  • M. A. Voytek
  • A. L. Gronstal
  • K. U. Kjeldsen
Original Paper

Abstract

A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l−1) and MgCl2·6H2O (3 g l−1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45°C, with an optimum between 35 and 40°C. The pH range for growth was 5.7–9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95–96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T).

Keywords

Tessaracoccus profundi Actinobacteria Taxonomy Deep subsurface 

Supplementary material

10482_2009_9367_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 (PDF 92 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  3. Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogentic and physiological diversity of cultured deep-biosphere bacteria from equatorial pacific ocean and Peru margin sediments. Geomicrobiol J 24:261–273CrossRefGoogle Scholar
  4. Blakwill DL, Reeves RH, Drake GR, Reeves JY, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216CrossRefGoogle Scholar
  5. Brown MG, Blakwill DL (2009) Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 57:484–493CrossRefPubMedGoogle Scholar
  6. Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315CrossRefPubMedGoogle Scholar
  7. Chivian D, Brodie EL, Alm EJ, Cullry DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hanzen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278CrossRefPubMedGoogle Scholar
  8. Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  9. Cockell C, Voytek M, Gronstal A, Kirshtein J, Cohn G, Powars DS, Sanford W, Horton W (2009) Microbiology of the Chesapeake Eyreville core: microbial enumerations and the relationship to impact processes. The Geological Society of America Special Paper volume on the Deep Drilling Project at Eyreville, VA (in press)Google Scholar
  10. Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL (2000) Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology 146:1295–1310PubMedGoogle Scholar
  11. D’Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang GZ, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221CrossRefPubMedGoogle Scholar
  12. Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499CrossRefPubMedGoogle Scholar
  13. Finster KW, Herbert RA, Kjeldsen KU, Schumann P, Lomstein BA (2009) Demequina lutea sp. nov. isolated from a high Arctic permafrost soil. Int J Syst Evol Microbiol 59:649–653CrossRefPubMedGoogle Scholar
  14. Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT, Mangelsdorf K, Mildenhall DC, Rinna J, Vieth A, Zink K-G, Sass H, Weightman AJ, Parkes RJ (2009) Prokaryptic populations and activities in an interbedded coal deposite, including a previously deeply buried section (1.6–2.3 km) above ≅150 Ma basement rock. Geomicrobiol J 26:163–178CrossRefGoogle Scholar
  15. Gérard E, Moreira D, Philippot P, Van Kranendonk MJ, López-García P (2009) Modern subsurface bacteria in pristine 2.7 Ga-old fossil stromatolite drillcore samples from the Fortescue Group, Western Australia. PLoS ONE 4:e5298CrossRefPubMedGoogle Scholar
  16. Gohn GS, Koeberl C, Miller KG, Reinold WU, The Scientific Staff of the Chesapeake Bay Impact Structure Drilling Project (2006) Chesapeake Bay impact structure deep drilling project completes coring. Sci Drill 3:34–37Google Scholar
  17. Gohn GS, Koeberl C, Miller KG, Reimold WU, Browning JV, Cockell CS, Horton JW Jr, Kenkmann T, Kulpecz AA, Powars DS, Sanford WE, Voytek MA (2008) Deep drilling into the Chesapeake Bay impact structure. Science 320:1740–1745CrossRefPubMedGoogle Scholar
  18. Gronstal AL, Voytek MA, Kirshtein JD, von der Heyde NM, Lowit MD, Cockell CS (2009) Contamination assessment in microbiological sampling of the Eyreville core, in the Chesapeake Bay impact structure. The Geological Society of America Special Paper volume on the Deep Drilling Project at Eyreville, VA (in press)Google Scholar
  19. Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239PubMedGoogle Scholar
  20. Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Northern Norway. Environ Microbiol 11:2870–2884CrossRefGoogle Scholar
  21. Horton JW, Powars DS, Gohn GS (2005) Studies of the Chesapeake Bay impact structure–Introduction and discussion. In: Horton JW, Powars DS, Gohn GS (eds) Studies of the Chesapeake Bay impact structure—The USGS-Langley Corehole, Hampton, Virginia and related coreholes and geological surveys, 1st edn. US Geological Survey, Reston, pp A1–A24Google Scholar
  22. Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MTP, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 104:14401–14405CrossRefPubMedGoogle Scholar
  23. Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nature Rev 5:770–781CrossRefGoogle Scholar
  24. Kämpfer P, Lodders N, Warfolomeow I, Busse H-J (2009) Description of Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 59:1545–1549CrossRefPubMedGoogle Scholar
  25. Lee DW, Lee SD (2008) Terracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 58:785–789CrossRefPubMedGoogle Scholar
  26. Ludwig W, Strunk O, Westram R, Richter L, Meier V, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371Google Scholar
  27. MacKenzie SL (1987) Gas chromatographic analysis of amino acids as the N-heptafluorobuyryl esters. J Assoc Off Anal Chem 70:151–160PubMedGoogle Scholar
  28. Maszensan AM, Seviour RJ, Patel BKC, Schumann P, Rees GN (1999) Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468CrossRefGoogle Scholar
  29. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  30. Morita RY, ZoBell CE (1955) Occurnce of bacteria in pelagic sediments collected during the Mid-Pacific expedition. Deep Sea Res 3:66–73CrossRefGoogle Scholar
  31. Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191CrossRefPubMedGoogle Scholar
  32. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman H, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413CrossRefGoogle Scholar
  33. Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:299–314CrossRefGoogle Scholar
  34. Poag CW (1997) The Chesapeake Bay bolide impact; a convulsive event in Atlantic Coastal Plain evolution. Sediment Geol 108:45–90CrossRefGoogle Scholar
  35. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) Silva a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Res 35:7188–7196CrossRefPubMedGoogle Scholar
  36. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  37. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67PubMedCrossRefGoogle Scholar
  38. Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Tempelton AS, Kieft TL, Smith RL, Sanford WE, Calaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152CrossRefPubMedGoogle Scholar
  39. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156CrossRefGoogle Scholar
  40. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  41. Schleifer KH, Seidl PH (1985) Chemical composition and structure of murein. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 201–219Google Scholar
  42. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and the 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  43. Stackebrandt E, Schaal KP (2006) The Family Propionibacteriaceae: the Genera Friedmanniella, Luteococcus, Microlunatus, Micropruina, Propioniferax, Propionimicrobium and Tessarococcus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York, pp 383–399Google Scholar
  44. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  45. Teske AP (2005) The deep biosphere is alive and well. Trends Microbiol 13:402–404CrossRefPubMedGoogle Scholar
  46. Thorsvik T, Furnes H, Muehlenbacks K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176CrossRefGoogle Scholar
  47. White DC, Phelps TJ, Onstott TC (1998) What’s up down there? Curr Opin Microbiol 1:286CrossRefPubMedGoogle Scholar
  48. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • K. W. Finster
    • 1
  • C. S. Cockell
    • 2
  • M. A. Voytek
    • 3
  • A. L. Gronstal
    • 2
  • K. U. Kjeldsen
    • 4
  1. 1.Department of Biological Sciences, Section for MicrobiologyAarhus UniversityAarhus C.Denmark
  2. 2.PSSRI, Open UniversityMilton KeynesUK
  3. 3.US Geological SurveyRestonUSA
  4. 4.Department of Biological Sciences, Center for GeomicrobiologyUniversity of AarhusAarhus C.Denmark

Personalised recommendations