Advertisement

Antonie van Leeuwenhoek

, 95:23 | Cite as

Four novel Candida species in the Candida albicans/Lodderomyces elongisporus clade isolated from the gut of flower beetles

  • Zhao-Hui Ji
  • Jian Hua Jia
  • Feng-Yan Bai
Original Paper

Abstract

Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization, four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus.

Keywords

Insect-associated yeasts Candida blackwellae sp. nov. Candida jiufengensis sp. nov. Candida oxycetoniae sp. nov. Candida pseudojiufengensis sp. nov. Candida albicans 

Notes

Acknowledgments

This study was supported by grant No. 30470005 from the National Natural Science Foundation of China (NSFC).

References

  1. Bai FY, Zhao JH, Takashima M, Jia JH, Boekhout T, Nakase T (2002) Reclassification of the Sporobolomyces roseus and the sporidiobolus pararoseus complexes, with the description of Sporobolomyces phaffii sp. nov. Int J Syst Evol Microbiol 52:2309–2314. doi: 10.1099/ijs.0.02297-0 PubMedCrossRefGoogle Scholar
  2. Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  3. Boekhout T (2005) Gut feeling for yeasts. Nature 434:449–451. doi: 10.1038/434449a PubMedCrossRefGoogle Scholar
  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 Google Scholar
  5. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 PubMedCrossRefGoogle Scholar
  6. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223PubMedGoogle Scholar
  7. Kurtzman CP, Robnett CJ, Yarrow D (2001) Two new anamorphic yeasts: Candida germanica and Candida neerlandica. Antonie Van Leeuwenhoek 80:77–83. doi: 10.1023/A:1012218122038 PubMedCrossRefGoogle Scholar
  8. Lachance MA, Bowles JM, Chavarria Diaz MM, Janzen DH (2001a) Candida cleridarum, Candida tilneyi and Candida powellii, three new yeast species isolated from insects associated with flowers. Int J Syst Evol Microbiol 51:1201–1207PubMedGoogle Scholar
  9. Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001b) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8PubMedGoogle Scholar
  10. Lachance MA, Bowles JM, Starmer WT (2003) Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Res 3:97–103PubMedGoogle Scholar
  11. Lachance MA, Ewing CP, Bowels JM, Starmer WT (2005) Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia manuinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. Int J Syst Evol Microbiol 55:1369–1377. doi: 10.1099/ijs.0.63615-0 PubMedCrossRefGoogle Scholar
  12. Lin D, Wu LC, Rinald MG, Lehmann PF (1995) Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol 33:1815–1821PubMedGoogle Scholar
  13. Makimura K, Murayama YS, Yamaguchi H (1994) Detection of a wide range of medically important fungi by the polymerase chain reaction. J Med Microbiol 40:358–364PubMedGoogle Scholar
  14. Meyer SA, Payne RW, Yarrow D (1998) Candida Berkhout. In: Kurtzman CP, Fell JW (eds) The yeastsa taxonomic study. Elsevier, Amsterdam, pp 454–573CrossRefGoogle Scholar
  15. Nardon P, Grenier AM (1989) Endosymbiosis in Coleoptera: biological, biochemical, and genetic aspects. In: Schwemmler W, Gassner G (eds) Insect endocytobiosis: morphology, physiology, genetics, evolution. CRC, Boca Raton, pp 175–216Google Scholar
  16. Nguyen NH, Suh SO, Blackwell M (2007) Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia 99:842–858. doi: 10.3852/mycologia.99.6.842 PubMedCrossRefGoogle Scholar
  17. Noda H, Omura T (1992) Purification of yeast-like symbiotes of planthoppers. J Invertebr Pathol 59:104–105. doi: 10.1016/0022-2011(92)90119-O CrossRefGoogle Scholar
  18. Rao RS, Bhadra B, Kumar NN, Shivaji S (2007) Candida hyderabadensis sp. nov., a novel ascomycetous yeast isolated from wine grapes. FEMS Yeast Res 7:489–493. doi: 10.1111/j.1567-1364.2006.00206.x PubMedCrossRefGoogle Scholar
  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  20. Suh SO, Blackwell M (2004) Three new beetle-associated yeasts in the Pichia guilliermondii clade. FEMS Yeast Res 5:87–95. doi: 10.1016/j.femsyr.2004.06.001 PubMedCrossRefGoogle Scholar
  21. Suh SO, Blackwell M (2005) Four new yeasts in the Candida mesenterica clade associated with basidiocarp-feeding beetles. Mycologia 97:167–177PubMedCrossRefGoogle Scholar
  22. Suh SO, Noda H, Blackwell M (2001) Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000PubMedGoogle Scholar
  23. Suh SO, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose fermenting gut yeasts. Mol Ecol 12:3137–3145. doi: 10.1046/j.1365-294X.2003.01973.x PubMedCrossRefGoogle Scholar
  24. Suh SO, Gibson CM, Blackwell M (2004a) Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int J Syst Evol Microbiol 54:1883–1890. doi: 10.1099/ijs.0.63152-0 PubMedCrossRefGoogle Scholar
  25. Suh SO, McHugh JV, Blackwell M (2004b) Expansion of the Candida tanzawaensis yeast clade: 16 new Candida species from basidiocarp-feeding beetles. Int J Syst Evol Microbiol 54:2409–2429. doi: 10.1099/ijs.0.63246-0 PubMedCrossRefGoogle Scholar
  26. Suh SO, McHugh JV, Pollock DD, Blackwell M (2005a) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265. doi: 10.1017/S0953756205002388 PubMedCrossRefGoogle Scholar
  27. Suh SO, Nguyen NH, Blackwell M (2005b) Nine new Candida species near Candida membranifaciens isolated from insects. Mycol Res 109:1045–1056. doi: 10.1017/S0953756205003254 PubMedCrossRefGoogle Scholar
  28. Suh S-O, Nguyen NH, Blackwell M (2006) A yeast clade near Candida kruisii uncovered: nine novel Candida species associated with basidioma-feeding beetles. Mycol Res 110:1379–1394. doi: 10.1016/j.mycres.2006.09.009 PubMedCrossRefGoogle Scholar
  29. Suh SO, Nguyen NH, Blackwell M (2008) Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans. FEMS Yeast Res 8:88–102PubMedCrossRefGoogle Scholar
  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  31. Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC (2005) Candida orthopsilosis and Candida metapsilosis spp.nov. to replace Candida parapsilosis group II and III. J Clin Microbiol 43:284–292. doi: 10.1128/JCM.43.1.284-292.2005 PubMedCrossRefGoogle Scholar
  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 PubMedCrossRefGoogle Scholar
  33. Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 77–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Systematic Mycology and Lichenology LaboratoryInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations