Skip to main content
Log in

Investigation of chicken intestinal bacterial communities by 16S rRNA targeted fluorescence in situ hybridization

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The aim of the investigation was to quantify selected dominant bacterial groups in the chicken intestinal tract. Conventional production was used as model and the effect of the supplement with Salinomycin was evaluated. Hybridization conditions were optimized for published probes with respect to a panel of reference bacteria. In chicken intestinal samples bacteria were quantified by fluorescence in situ hybridization with 16S rRNA oligonucleotides directed towards bacteria related to Lactobacillus, Bacillus, Enterococcus-Streptococcus-Lactococcus, Enterobacteriaceae, Bacteroides, Clostridium and the domain Bacteria in lumen of ileum and cecum as well as on the intestinal wall including mucus of four individuals. Salinomycin in feed reduced counts of the Lactobacillus-, Enterobacteriaceae- and Clostridium-like bacteria in lumen of ileum compared to the conventional control. Increased or decreased bacterial counts were registered by Salinomycin in the ceca compared to the control. Relatively higher counts of Bacteroides- and Clostridium-like bacteria were found on the intestinal wall including mucus compared to lumen. The increase in numbers of some bacterial groups as well as the expected reduction by Salinomycin and the observed difference in the relative distribution of bacteria between lumen and intestinal wall are new observations that will need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Apajalahti JHA, Sarkilahti LK, Maki BR, Heikkinen JP, Nurminen PH, Holben WE (1998) Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. Appl Environ Microbiol 64:4084–4088

    PubMed  CAS  Google Scholar 

  • Apajalahti JHA, Kettunen A, Bedford MR, Holben WE (2001) Percent G + C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl Environ Microbiol 67:5656–5667. doi:10.1128/AEM.67.12.5656-5667.2001

    Article  PubMed  CAS  Google Scholar 

  • Apajalahti J, Kettunen A, Graham H (2004) Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 60:223–232. doi:10.1079/WPS20040017

    Article  Google Scholar 

  • Barc MC, Bourlioux F, Rigottier-Gois L, Charrin-Sarnel C, Janoir C, Boureau H et al (2004) Effect of amoxicillin-clavulanic acid on human fecal flora in a gnotobiotic mouse model assessed with fluorescence hybridization using group-specific 16S rRNA probes in combination with flow cytometry. Antimicrob Agents Chemother 48:1365–1368. doi:10.1128/AAC.48.4.1365-1368.2004

    Article  PubMed  CAS  Google Scholar 

  • Barnes J (2003) Clostridial diseases. In: Saif YM (ed) Diseases of poultry, 11st edn. Iowa State Press, Ames, pp 775–791

    Google Scholar 

  • Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K (2006) Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult Sci 85:1151–1164

    PubMed  CAS  Google Scholar 

  • Boye M, Jensen TK, Moller K, Leser TD, Jorsal SE (1998) Specific detection of the genus Serpulina, S. hyodysenteriae and S. pilosicoli in porcine intestines by fluorescent rRNA in situ hybridization. Mol Cell Probes 12:323–330. doi:10.1006/mcpr.1998.0193

    Article  PubMed  CAS  Google Scholar 

  • Christensen H, Hansen M, Sørensen J (1999) Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl Environ Microbiol 65:1753–1761

    PubMed  CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P et al (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363. doi:10.1126/science.2466341

    Article  PubMed  CAS  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    PubMed  CAS  Google Scholar 

  • Donoghue AM, Farnell MB, Cole K, Donoghye DJ (2006) Mechanisms of pathogen control in the avian gastrointestinal tract. In: Perry GC (ed) Avian gut function in health and disease. Poultry Science Symposium Series vol. 28. CABI, Wallingford, pp 138–155

    Google Scholar 

  • Dore J, Sghir A, Hannequart-Gramet G, Corthier G, Pochart P (1998) Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst Appl Microbiol 21:65–71

    PubMed  CAS  Google Scholar 

  • Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    PubMed  CAS  Google Scholar 

  • Gabriel I, Lessire M, Mallet S, Guillot JF (2006) Microflora of the digestive tract: critical factors and consequences for poultry. Worlds Poult Sci J 62:499–509. doi:10.1017/S0043933906001115

    Article  Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi:10.1126/science.1124234

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Forster RJ, Yu H, Chambers JR, Sabour PM, Wheatcroft R et al (2002a) Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol Lett 208:1–7. doi:10.1111/j.1574-6968.2002.tb11051.x

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Forster RJ, Yu H, Chambers JR, Wheatcroft R, Sabour PM et al (2002b) Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol Ecol 41:171–179. doi:10.1111/j.1574-6941.2002.tb00978.x

    Article  CAS  PubMed  Google Scholar 

  • Lan PT, Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol Immunol 46:371–382

    PubMed  CAS  Google Scholar 

  • Lan PT, Sakamoto M, Benno Y (2004) Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol Immunol 48:917–929

    PubMed  CAS  Google Scholar 

  • Lan Y, Verstegen MWA, Tamminga S, Williams BA (2005) The role of the commensal gut microbial community in broiler chickens. Worlds Poult Sci J 61:95–104. doi:10.1079/WPS200445

    Article  Google Scholar 

  • Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH et al (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    PubMed  CAS  Google Scholar 

  • Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824. doi:10.1128/AEM.69.11.6816-6824.2003

    Article  PubMed  CAS  Google Scholar 

  • McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295. doi:10.1021/bi00836a024

    Article  PubMed  CAS  Google Scholar 

  • Meier H, Amann R, Ludwig W, Schleifer KH (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Syst Appl Microbiol 22:186–196

    PubMed  CAS  Google Scholar 

  • Moreno Y, Hernandez M, Ferrus MA, Alonso JL, Botella S, Montes R et al (2001) Direct detection of thermotolerant campylobacters in chicken products by PCR and in situ hybridization. Res Microbiol 152:577–582. doi:10.1016/S0923-2508(01)01232-3

    Article  PubMed  CAS  Google Scholar 

  • Ootsubo M, Shimizu T, Tanaka R, Sawabe T, Tajima K, Yoshimizu M et al (2002) Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. J Appl Microbiol 93:60–68. doi:10.1046/j.1365-2672.2002.01668.x

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277. doi:10.1016/S0168-9525(00)02024-2

    Article  PubMed  CAS  Google Scholar 

  • Rigottier-Gois L, Rochet V, Garrec N, Suau A, Dore J (2003) Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rRNA probes. Syst Appl Microbiol 26:110–118. doi:10.1078/072320203322337399

    Article  PubMed  Google Scholar 

  • Schwiertz A, Le BG, Blaut M (2000) Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 66:375–382

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    PubMed  CAS  Google Scholar 

  • Uni Z (2006) Early development of small intestinal function. In: Perry GC (ed) Avian gut function in health and disease. Poultry Science Symposium Series vol. 28. CABI, Wallingford, pp 29–42

    Google Scholar 

  • van der Wielen PW, Keuzenkamp DA, Lipman LJ, van Knapen F, Biesterveld S (2002) Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microb Ecol 44:286–293. doi:10.1007/s00248-002-2015-y

    Article  PubMed  CAS  Google Scholar 

  • Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 33:537–549. doi:10.1080/03079450400013162

    Article  PubMed  Google Scholar 

  • Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143. doi:10.1002/cyto.990140205

    Article  PubMed  CAS  Google Scholar 

  • Wise MG, Siragusa GR (2005) Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl Environ Microbiol 71:3911–3916. doi:10.1128/AEM.71.7.3911-3916.2005

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz S, Ökten HE, Noguera DR (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 72:733–744. doi:10.1128/AEM.72.1.733-744.2006

    Article  PubMed  CAS  Google Scholar 

  • Zhu XY, Joerger RD (2003) Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poult Sci 82:1242–1249

    PubMed  CAS  Google Scholar 

  • Zhu XY, Zhong T, Pandya Y, Joerger RD (2002) 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 68:124–137. doi:10.1128/AEM.68.1.124-137.2002

    Article  PubMed  CAS  Google Scholar 

  • Zoetendal EG, Ben-Amor K, Harmsen HJ, Schut F, Akkermans AD, De Vos WM (2002) Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68:4225–4232. doi:10.1128/AEM.68.9.4225-4232.2002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Jens Peter Christensen is acknowledged for instructions about dissection of birds. Ricarda Engberg, Department of Animal Nutrition and Physiology, Danish Institute of Agricultural Sciences, Research Centre Foulum, Denmark; Jette Søholm Petersen, Landscentret, Fjerkræ, Århus; Henning Fynboe Madsen, Horsens and Karen Margrethe Balle, Landscentret, Fjerkræ, Århus are acknowledged for their kind assistance to get access to the poultry and to the detailed data on production parameters. The work is part of the EU project, POULTRYFLORGUT for the thematic call FP6-2003-FOOD-2-A T1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, K.N., Henriksen, M., Bisgaard, M. et al. Investigation of chicken intestinal bacterial communities by 16S rRNA targeted fluorescence in situ hybridization. Antonie van Leeuwenhoek 94, 423–437 (2008). https://doi.org/10.1007/s10482-008-9260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9260-0

Keywords

Navigation