Skip to main content

Advertisement

Log in

Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

New techniques to explore microbial diversity have led to resurgent interest in prospecting for natural products (bioprospecting or biodiscovery). Although many bioprospecting projects may share little in common at first glance, the vast majority share one particular challenge. Their targets are rare to very rare members of complex natural assemblages. Despite the advances made in bringing new organisms into cultivation and application of culture-independent techniques to isolation of novel genes there remain systematic biases against relatively rare organisms with specific growth requirements. These can frequently be overcome by application of multidisciplinary approaches that take into account principles of evolutionary ecology. Our experiences with prospecting for soluble di-iron monooxygenases (SDIMO) indicate that conventional approaches to organism isolation and metagenomic cloning systematically under-sample diversity in this enzyme family. This reflects that SDIMO-containing organisms are typically relatively low-abundance members of natural assemblages (thus biased against by direct cloning) and SDIMOs have discrete physiological roles in each organism (thus are not amenable to generic enrichment culture strategies). We have sought to overcome this by a PCR-based survey of gene diversity to guide evaluation of subsequent culture or cloning studies. A surprising outcome of this survey was that conventional PCR approaches using degenerate primers also systematically under-sampled diversity, but nested PCR strategies revealed unprecedented diversity. We conclude that many PCR-based gene-prospecting studies are likely to have under-estimated the impact of target:competitor ratios on their success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220

    Article  CAS  Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  PubMed  CAS  Google Scholar 

  • Champreda V, Zhou NY, Leak DJ (2004) Heterologous expression of alkene monooxygenase components from Xanthobacter autotrophicus Py2 and reconstitution of the active complex. FEMS Microbiol Lett 239:309–318

    Article  PubMed  CAS  Google Scholar 

  • Champreda V, Choi YJ, Zhou NY, Leak DJ (2006) Alteration of the stereo- and regioselectivity of alkene monooxygenase based on coupling protein interactions. Appl Microbiol Biotechnol 71:840–847

    Article  PubMed  CAS  Google Scholar 

  • Chion C, Askew SE, Leak DJ (2005) Cloning, expression, and site-directed mutagenesis of the propene monooxygenase genes from Mycobacterium sp. strain M156. Appl Environ Microbiol 71:1909–1914

    Article  CAS  Google Scholar 

  • Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239

    Article  PubMed  CAS  Google Scholar 

  • Duetz WA, Dejong C, Williams PA, Vanandel JG (1994) Competition in chemostat culture between pseudomonas strains that use different pathways for the degradation of toluene. Appl Environ Microbiol 60:2858–2863

    PubMed  CAS  Google Scholar 

  • Fiet SV, van Beilen JB, Witholt B (2006) Selection of biocatalysts for chemical synthesis. Proc Natl Acad Sci USA 103:1693–1698

    Article  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  PubMed  CAS  Google Scholar 

  • Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750

    Article  PubMed  CAS  Google Scholar 

  • Groves JT (2006) High-valent iron in chemical and biological oxidations. J Inorg Biochem 100:434–447

    Article  PubMed  CAS  Google Scholar 

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2006) Site-directed amino acid substitutions in the hydroxylase at subunit of butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. J Bacteriol 188:4962–4969

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  PubMed  CAS  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318

    PubMed  CAS  Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for bacteria. Nature 432:750–753

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  PubMed  CAS  Google Scholar 

  • McClay K, Boss C, Keresztes I, Steffan RJ (2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 71:5476–5483

    Article  PubMed  CAS  Google Scholar 

  • McDonald IR, Kenna EM, Murrell JC (1995) Detection of methanotrophic bacteria in environmental-samples with the pcr. Appl Environ Microbiol 61:116–121

    PubMed  CAS  Google Scholar 

  • Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, Rittmann BE, Stahl DA (1999) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671

    PubMed  CAS  Google Scholar 

  • Notomista E, Lahm A, Di Donato A, Tramontano A (2003) Evolution of bacterial and archaeal multicomponent monooxygenases. J Mol Evol 56:435–445

    Article  PubMed  CAS  Google Scholar 

  • Park J, Kim D, Kim S, Kim J, Bae K, Lee C (2007) The analysis and application of a recombinant monooxygenase library as a biocatalyst for the Baeyer–Villiger reaction. J Microbiol Biotechnol 17:1083–1089

    PubMed  CAS  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  PubMed  CAS  Google Scholar 

  • Sieber V, Martinez CA, Arnold FH (2001) Libraries of hybrid proteins from distantly related sequences. Nat Biotechnol 19:456–460

    Article  PubMed  CAS  Google Scholar 

  • Stirling DI, Dalton H (1979) Properties of the methane mono-oxygenase from extracts of methylosinus-trichosporium Ob3b and evidence for its similarity to the enzyme from methylococcus-capsulatus (Bath). Eur J Biochem 96:205–212

    Article  PubMed  CAS  Google Scholar 

  • Tee KL, Schwaneberg U (2007) Directed evolution of oxygenases: screening systems, success stories and challenges. Comb Chem High Throughput Screen 10:197–217

    Article  PubMed  CAS  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    Article  PubMed  CAS  Google Scholar 

  • Urlacher VB, Schmid RD (2006) Recent advances in oxygenase-catalyzed biotransformations. Curr Opin Chem Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  Google Scholar 

  • van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  PubMed  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  PubMed  Google Scholar 

  • Wackett LP (2002) Mechanism and applications of Rieske non-heme iron dioxygenases. Enzyme and Microb Technol 31:577–587

    Article  CAS  Google Scholar 

  • Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker genes for identification of sulfate-reducing prokaryotes. Methods Enzymol 397:469–489

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396–4402

    PubMed  CAS  Google Scholar 

  • Watanabe K, Futamata H, Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:655–663

    Article  CAS  Google Scholar 

  • Yeates C, Holmes AJ, Gillings MR (2000) Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated sails. Environ Microbiol 2:644–653

    Article  PubMed  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, A.J., Coleman, N.V. Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie van Leeuwenhoek 94, 75–84 (2008). https://doi.org/10.1007/s10482-008-9227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9227-1

Keywords

Navigation