Skip to main content

Hydrogen as an energy source for the human pathogen Bilophila wadsworthia

Abstract

The gram-negative anaerobic gut bacterium Bilophila wadsworthia is the third most common isolate in perforated and gangrenous appendicitis, being also found in a variety of other infections. This organism performs a unique kind of anaerobic respiration in which taurine, a major organic solute in mammals, is used as a source of sulphite that serves as terminal acceptor for the electron transport chain. We show here that molecular hydrogen, one of the major products of fermentative bacteria in the colon, is an excellent growth substrate for B. wadsworthia. We have quantified the enzymatic activities associated with the oxidation of H2, formate and pyruvate for cells obtained in different growth conditions. The cell extracts present high levels of hydrogenase activity, and up to five different hydrogenases can be expressed by this organism. One of the hydrogenases appears to be constitutive, whereas the others show differential expression in different growth conditions. Two of the hydrogenases are soluble and are recognised by antibodies against a [FeFe] hydrogenase of a sulphate reducing bacterium. One of these hydrogenases is specifically induced during fermentative growth on pyruvate. Another two hydrogenases are membrane-bound and show increased expression in cells grown with hydrogen. Further work should be carried out to reveal whether oxidation of hydrogen contributes to the virulence of B. wadsworthia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abbe K, Takahashi S, Yamada T (1982) Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J Bacteriol 152:175–182

    PubMed  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    PubMed  Article  CAS  Google Scholar 

  • Baron EJ (1997) Bilophila wadsworthia: a unique gram-negative anaerobic rod. Anaerobe 3:83–86

    PubMed  Article  CAS  Google Scholar 

  • Baron EJ, Summanen P, Downes J, Roberts MC, Wexler H, Finegold SM (1989) Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol 135:3405–3411

    PubMed  CAS  Google Scholar 

  • Baron EJ, Curren M, Henderson G, Jousimiessomer H, Lee K, Lechowitz K, Strong CA, Summanen P, Tuner K, Finegold SM (1992) Bilophila wadsworthia isolates from clinical specimens. J Clin Microbiol 30:1882–1884

    PubMed  CAS  Google Scholar 

  • Campieri M, Gionchetti P (2001) Bacteria as the cause of ulcerative colitis. Gut 48:132–135

    PubMed  Article  CAS  Google Scholar 

  • Chabriere E, Vernede X, Guigliarelli B, Charon MH, Hatchikian EC, Fontecilla-Camps JC (2001) Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Science 294:2559–2563

    PubMed  Article  CAS  Google Scholar 

  • Claros MC, Schumacher U, Jacob M, Gerardo SH, Kleinkauf N, Goldstein EJC, Finegold SM, Rodloff AC (1999) Characterization of Bilophila wadsworthia isolates using PCR fingerprinting. Anaerobe 5:589–593

    Article  CAS  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459

    PubMed  CAS  Google Scholar 

  • de Bok FAM, Roze EHA, Stams AJM (2002) Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. Antonie Van Leeuwenhoek 81:283–291

    PubMed  Article  Google Scholar 

  • Denger K, Laue H, Cook AM (1997) Thiosulfate as a metabolic product: the bacterial fermentation of taurine. Arch Microbiol 168:297–301

    PubMed  Article  CAS  Google Scholar 

  • Finegold S, Summanen P, Hunt Gerardo S, Baron E (1992) Clinical importance of Bilophila wadsworthia. Eur J Clin Microbiol Infect Dis 11:1058–1063

    PubMed  Article  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    PubMed  Article  CAS  Google Scholar 

  • Guarner F (2005) The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr Opin Gastroenterol 21:414–418

    PubMed  Google Scholar 

  • Guarner F (2006) Enteric flora in health and disease. Digestion 73(suppl 1):5–12

    PubMed  Article  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou LW, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    PubMed  Article  CAS  Google Scholar 

  • Jormakka M, Byrne B, Iwata S (2003) Formate dehydrogenase—a versatile enzyme in changing environments. Curr Opin Struct Biol 13:418–423

    PubMed  Article  CAS  Google Scholar 

  • Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333

    PubMed  Article  CAS  Google Scholar 

  • Laue H, Cook AM (2000a) Biochemical and molecular characterization of taurine: pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. Eur J Biochem 267:6841–6848

    PubMed  Article  CAS  Google Scholar 

  • Laue H, Cook AM (2000b) Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism in the anaerobe Bilophila wadsworthia. Arch Microbiol 174:162–167

    PubMed  Article  CAS  Google Scholar 

  • Laue H, Denger K, Cook AM (1997) Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021

    PubMed  CAS  Google Scholar 

  • Laue H, Friedrich M, Ruff J, Cook AM (2001) Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol 183:1727–1733

    PubMed  Article  CAS  Google Scholar 

  • Laue H, Smits TH, Schumacher UK, Claros MC, Hartemink R, Cook AM (2006) Identification of Bilophila wadsworthia by specific PCR which targets the taurine:pyruvate aminotransferase gene. FEMS Microbiol Lett 261:74–79

    PubMed  Article  CAS  Google Scholar 

  • Lie TJ, Clawson ML, Godchaux W, Leadbetter ER (1999) Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov Appl Environ Microbiol 65:3328-3334

    PubMed  CAS  Google Scholar 

  • Loubinoux J, Bronowicki JP, Pereira IAC, Mougenel JL, Le Faou AE (2002) Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 40:107–112

    Article  CAS  Google Scholar 

  • Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925

    PubMed  Article  CAS  Google Scholar 

  • Maier RJ (2005) Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochem Soc Trans 33:83–85

    PubMed  Article  CAS  Google Scholar 

  • Matias PM, Pereira IAC, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Progr Biophys Mol Biol 89:292–329

    Article  CAS  Google Scholar 

  • Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858

    PubMed  Article  CAS  Google Scholar 

  • McOrist S, Keller L, McOrist AL (2003) Search for Lawsonia intracellularis and Bilophila wadsworthia in malabsorption-diseased chickens. Can J Vet Res 67:232–234

    PubMed  Google Scholar 

  • McOrist AL, Warhurst M, McOrist S, Bird AR (2001) Colonic infection by Bilophila wadsworthia in pigs. J Clin Microbiol 39:1577–1579

    PubMed  Article  CAS  Google Scholar 

  • Narushima S, Itoha K, Miyamoto Y, Park SH, Nagata K, Kuruma K, Uchida K (2006) Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids 41:835–843

    PubMed  Article  CAS  Google Scholar 

  • Olson JW, Maier RJ (2002) Molecular hydrogen as an energy source for Helicobacter pylori. Science 298:1788–1790

    PubMed  Article  CAS  Google Scholar 

  • Roediger WEW, Moore J, Babidge W (1997) Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 42:1571–1579

    PubMed  Article  CAS  Google Scholar 

  • Schumacher UK, Eiring P, Hacker FM (1997) Incidence of Bilophila wadsworthia in appendiceal, peritoneal and fecal samples from children. Clin Microbiol Infect 3:134–136

    PubMed  Article  Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta—Bioenerg 1320:217–234

    Article  CAS  Google Scholar 

  • Valente FMA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC (2006) Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:3228–3235

    PubMed  Article  CAS  Google Scholar 

  • Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188

    PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Vorholt JA, Thauer RK (2002) Molybdenum and tungsten enzymes in C1 metabolism. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 39. Taylor & Francis, New York, pp 571–619

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Yamamoto Y, Sato Y, Takahashi-Abbe S, Takahashi N, Kizaki H (2000) Characterization of the Streptococcus mutans pyruvate formate-lyase (PFL)-activating enzyme gene by complementary reconstitution of the in vitro PFL-reactivating system. Infect Immun 68:4773–4777

    PubMed  Article  CAS  Google Scholar 

  • Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank João Carita for growth of B. wadsworthia cells in a bioreactor, Cristina Leitão for HPLC analysis and Isabel Pacheco for GC analysis. This work was supported by the research grant POCTI/ESP/44782/02 funded by Fundação para a Ciência e Tecnologia (FCT, MCES, Portugal) and FEDER program. F.M.A.V. was supported by FCT PhD grant SFRH/BD/9187/2002, S.M.S. by FCT PhD grant SFRH/BD/24312/2005 and S.S.V. by FCT PhD grant SFRH/BD/30648/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês A. C. Pereira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

da Silva, S.M., Venceslau, S.S., Fernandes, C.L.V. et al. Hydrogen as an energy source for the human pathogen Bilophila wadsworthia . Antonie van Leeuwenhoek 93, 381–390 (2008). https://doi.org/10.1007/s10482-007-9215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9215-x

Keywords

  • Bilophila wadsworthia
  • Hydrogen
  • Hydrogenase
  • Formate dehydrogenase
  • Gut bacteria