Skip to main content
Log in

Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94:536–544

    PubMed  CAS  Google Scholar 

  • Arrizon J, Gschaedler A (2002) Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process. Can J Microbiol 48:965–970

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Greene Publishing associates and Wiley-Interscience, New York

    Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J Biol Chem 257:3018–25

    PubMed  CAS  Google Scholar 

  • Bergmeyer HU (1983). Methods of enzymatic analysis. 3rd edn. Verlan Chemie, Weinheim

    Google Scholar 

  • Bisson LF, Coons DM, Kruckeberg AL, Lewis DA (1993) Yeast sugar transporters. Crit Rev Biochem Mol Biol 28:259–308

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cedeño M (1995) Tequila production. Crit Rev Biotechnol 15:1–11

    PubMed  Google Scholar 

  • Cortassa S, Aon MA (1994) Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae under carbon, nitrogen, or phosphate limitations. Enzyme Microb Technol 16:761–770

    Article  CAS  Google Scholar 

  • Cottarel G, Shero HJ, Hietter P, Hegemann JH (1989) A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349

    PubMed  CAS  Google Scholar 

  • Dilorio AA, Weathers PJ, Campbell DA (1987) Comparative enzyme and ethanol production in an isogenic yeast ploidy series. Curr Genet 12:9–14

    Article  Google Scholar 

  • Elbing K, Larsson C, Bill RM, Albers E, Snoep JL, Boles E, Hohmann S, Gustafsson L (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Env Microbiol 70:5323–5330

    Article  CAS  Google Scholar 

  • Flores BEP, González AJF, Arrizon GJP, Romano P, Carece A, Gschaedler M (2005) The uses of AFLP for detecting DNA polymorphism, genotype identification and genetic diversity between yeasts isolated from Mexican agave-distilled beverages and from grape musts. Lett Appl Microbiol 41:147–152

    Article  CAS  Google Scholar 

  • Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–172

    Article  CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188

    Article  PubMed  CAS  Google Scholar 

  • Hauf J, Zimmermann F, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26:688–698

    Article  PubMed  CAS  Google Scholar 

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Bisson LF (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol 11:3804–3813

    PubMed  CAS  Google Scholar 

  • Luyten K, Riou C, Blondin B (2002) The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast 19:713–726

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Montgomery DC (1991) Designs and analysis of experiments. Wiley, New York

    Google Scholar 

  • Otterstedt K, Larsson C, Bill RM, Stahlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537

    Article  PubMed  CAS  Google Scholar 

  • Özcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572

    PubMed  Google Scholar 

  • Perez M, Luyten K, Michel R, Riou C, Blondin B (2005) Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high affinity Hxt transporters are expressed. FEMS Yeast Res 5:351–361

    Article  PubMed  CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  PubMed  CAS  Google Scholar 

  • Qing-Xue K, Li-Min C, Ai-Li Z, Xun C (2007) Overexpressing GLT1 in gpd1Δ mutant to improve the production of ethanol of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1382–1386

    Article  CAS  Google Scholar 

  • Reijenga KA, Snoep JL, Diderich JA, van Verseveld HW, Westerhoff HV, Teusink B (2001) Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J 80:626–634

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schaaff I, Heinisch J, Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Smits HP, Hauf J, Müller S, Hobley T, Zimmermann FK, Hanh-Hägerdal B, Nielsen J, Olsson L (2000) Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Google Scholar 

  • Snoep JL, Yomano LP, Westerhoff HV, Ingram LO (1995) Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141:2329–2337

    CAS  Google Scholar 

  • Torres-Guzman JC, Arreola-Garcia GA, Zazueta-Sandoval R, Carrillo-Rayas T, Martinez-Cadena G, Gutierrez-Corona F (1994) Genetic evidence for independence between fermentative metabolism (ethanol accumulation) and yeast-cell development in the dimorphic fungus Mucor rouxii. Curr Genet 26:166–171

    Article  PubMed  CAS  Google Scholar 

  • van de Aar PC, Lopes TS, Klootwijk J, Groeneveld Ph, van Verseveld HW, Stouthamer AH (1990) Consequences of phosphoglycerate kinase for the growth and physiology of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32:577–587

    Article  Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci USA 85:865–869

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Kruckeberg AL, Berden JA, van Dam K (1999) Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter. J Bacteriol 181:4673–4675

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Consejo Nacional de la Ciencia y Tecnología de México (CONACYT, project 41148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose de Jesús Ramírez-Córdova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Lomelí, M., Torres-Guzmán, J.C., González-Hernández, G.A. et al. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration. Antonie van Leeuwenhoek 93, 363–371 (2008). https://doi.org/10.1007/s10482-007-9213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9213-z

Keywords

Navigation