Antonie van Leeuwenhoek

, Volume 92, Issue 3, pp 319–330 | Cite as

Wolinella succinogenes response to ox-bile stress

  • Bernice M. Tan
  • Quoc V. Tu
  • Zsuzsanna Kovach
  • Mark Raftery
  • George L. Mendz
CHRO RESEARCH

Abstract

The bacterium Wolinella succinogenes is the only known species of its genus. It was first isolated from cow ruminal fluid, and in cattle, it dwells in the reticulum and rumen compartments of the stomach. The global protein response of W. succinogenes to ox-bile was investigated with the aim to understand bile-tolerance mechanisms of the bacterium. Bacteria were grown in liquid media supplemented with different bile concentrations to determine its effects on growth and morphology. Proteomic analyses served to identify 14 proteins whose expression was modulated by the presence of 0.2% bile. Quantitative real-time PCR analyses of the expression of selected genes were employed to obtain independent confirmation of the proteomics data. Proteins differentially expressed revealed metabolic pathways involved in the adaptation of W. succinogenes to bile. The data suggested that bile stress elicited complex physiological responses rather than just specific pathways, and identified proteins previously unknown to be involved in the adaptation of bacteria to bile.

Keywords

Wolinella succinogenes Bile response 2D-PAGE Proteomics Quantitative RT-PCR Modulation of protein expression 

References

  1. Allen KJ, Griffiths MW (2001) Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett 205:43–48PubMedGoogle Scholar
  2. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Meyer F, Lederer H, Schuster SC (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci USA 100:11690–11695PubMedCrossRefGoogle Scholar
  3. Begley M, Gahan CGM, Hill C (2004) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651CrossRefGoogle Scholar
  4. Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J (1999) Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol 39:68–72PubMedCrossRefGoogle Scholar
  5. Bohr UR, Segal I, Primus A, Wex T, Hassan H, Ally R., Malfertheiner P (2003) Detection of a putative novel Wolinella species in patients with squamous cell carcinoma of the esophagus. Helicobacter 8:608–612PubMedCrossRefGoogle Scholar
  6. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482PubMedCrossRefGoogle Scholar
  7. Caldas TD, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:885–860Google Scholar
  8. Clavel T, Lazzaroni JC, Vianney A, Portalier R (1996) Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 19:19–25PubMedCrossRefGoogle Scholar
  9. Eppinger M, Baar C, Raddatz G, Huson DH, Schuster SC (2004) Comparative analysis of four Campylobacterales. Nat Rev Microbiol 2:872–885PubMedCrossRefGoogle Scholar
  10. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282PubMedCrossRefGoogle Scholar
  11. Fox EM, Raftery M, Goodchild A, Mendz GL (2006) Campylobacter jejuni response to ox-bile stress. FEMS Immunol Med Microbiol 49(1):165–172CrossRefGoogle Scholar
  12. Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913PubMedCrossRefGoogle Scholar
  13. Halligan BD, Ruotti V, Jin W, Laffoon S, Twigger SN, Dratz EA (2004) ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Res 32:W638–W644PubMedCrossRefGoogle Scholar
  14. Hofmann AF (1999) Bile acids: the good, the bad, and the ugly. News Physiol Sci 14:24–29PubMedGoogle Scholar
  15. Jayasekera MM, Shi W, Farber GK, Viola RE (1997) Evaluation of functionally important amino acids in l-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36:9145–9150PubMedCrossRefGoogle Scholar
  16. Kiss E, Huguet T, Poinsot V, Batut J (2004) The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant Microbe Interact 17:235–244PubMedCrossRefGoogle Scholar
  17. Len AC, Harty DW, Jacques NA (2004a) Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366CrossRefGoogle Scholar
  18. Len ACL, Harty DWS, Jacques NA (2004b) Stress-responsive proteins are up-regulated in Streptococcus mutans during acid tolerance. Microbiology 150:1339–1351CrossRefGoogle Scholar
  19. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818PubMedCrossRefGoogle Scholar
  20. Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71:4250–4259PubMedCrossRefGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-??C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  22. Masci E, Testoni PA, Fanti L, Guslandi M, Zuin M, Tittobello A (1987) Duodenogastric reflux: correlations among bile acid pattern, mucus secretion, and mucosal damage. Scand J Gastroenterol 22:308–312PubMedGoogle Scholar
  23. Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7PubMedGoogle Scholar
  24. Okoli AS, Wadstrom T, Mendz GL (2006) Bioinformatic study of bile responses in Campylobacterales. FEMS Immunol Med Microbiol 49(1):101–123CrossRefGoogle Scholar
  25. Osawa R, Yamai S (1996) Production of thermostable direct hemolysin by Vibrio parahaemolyticus enhanced by conjugated bile acids. Appl Environ Microbiol 62:3023–3025PubMedGoogle Scholar
  26. Pace JL, Chai TJ, Rossi HA, Jiang X (1997) Effect of bile on Vibrio parahaemolyticus. Appl Environ Microbiol 63:2372–2377PubMedGoogle Scholar
  27. Parish CA, Rando RR (1996) Isoprenylation/methylation of proteins enhances membrane association by a hydrophobic mechanism. Biochemistry 35:8473–8477PubMedCrossRefGoogle Scholar
  28. Raphael BH, Pereira S, Flom GA, Zhang Q, Ketley JM, Konkel ME (2005) The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol 187:3662–3670PubMedCrossRefGoogle Scholar
  29. Rivera-Amill V, Kim BJ, Seshu J, Konkel ME (2001) Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J Infect Dis 183:1607–1616PubMedCrossRefGoogle Scholar
  30. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 32:3340–3353PubMedCrossRefGoogle Scholar
  31. Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122PubMedCrossRefGoogle Scholar
  32. Sanchez B, Champomier-Verges MC, Anglade P, Baraige F, de Los Reyes-Gavilan CG, Margolles A, Zagorec M (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808PubMedCrossRefGoogle Scholar
  33. Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P (2005) Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S]methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiol Lett 248:207–215PubMedCrossRefGoogle Scholar
  34. Sekowska A, Bertin P, Danchin A (1998) Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol Microbiol 29:851–858PubMedCrossRefGoogle Scholar
  35. Simon J, Gross R, Klimmek O, Kroger A (2000) The genus Wolinella. The Prokaryotes. 3rd edn. Springer-Verlag, New York, USAGoogle Scholar
  36. Synder L, Champness W (2003) Molecular Genetics of Bacteria. ASM Press, Herndon, VA, USAGoogle Scholar
  37. Tavori H, Kimmel Y, Barak Z (1981) Toxicity of leucine-containing peptides in Escherichia coli caused by circumvention of leucine transport regulation. J Bacteriol 146:676–683PubMedGoogle Scholar
  38. Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518PubMedGoogle Scholar
  39. Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814PubMedGoogle Scholar
  40. Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol 81:911–917PubMedGoogle Scholar
  41. Zhang L, Day A, Mckenzie G, Mitchell H (2006) Nongastric Helicobacter species detected in the intestinal tract of children. J Clin Microbiol 44:2276–2279PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Bernice M. Tan
    • 1
  • Quoc V. Tu
    • 2
  • Zsuzsanna Kovach
    • 2
  • Mark Raftery
    • 3
  • George L. Mendz
    • 2
  1. 1.School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyAustralia
  2. 2.School of Medical SciencesThe University of New South WalesSydneyAustralia
  3. 3.Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydneyAustralia

Personalised recommendations