Skip to main content
Log in

Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The production of proteolytic enzymes by several strains of ectomycorrhizal fungi i.e., Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), Suillus bovinus (15-3), Suillus luteus (14-7) on mycelia of Trichoderma harzianum, Trichoderma virens and Mucor hiemalis and sodium caseinate, yeast extract was evaluated. The strains of A. muscaria (16-3) and L. laccata (9-12) were characterized by the highest activity of the acidic and neutral proteases. Taking the mycelia of saprotrophic fungi into consideration, the mycelium of M. hiemalis was the best inductor for proteolytic activity. The examined ectomycorrhizal fungi exhibited higher activity of acidic proteases than neutral ones on the mycelia of saprotrophic fungi, which may imply the participation of acidic proteases in nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1988) Amino acids as nitrogen sources for ectomycorrhizal fungi: utilisation of individual amino acids. Trans Br Mycol Soc 9:473–479

    Article  Google Scholar 

  • Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17(4):273–306

    Article  PubMed  CAS  Google Scholar 

  • De Boer W, Gunnewiek PJAK, Kowalchuk GA, Van Veen JA (2001) Growth of chitinolytic dune soil beta subclass Proteobacteria in response to invading fungal hyphae. Appl Environ Microbiol 67:3358–3362

    Article  PubMed  Google Scholar 

  • De Boer W, Gunnewiek PJAK, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Antifungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30:193–203

    Article  Google Scholar 

  • Delgado-Jarana J, Pinto-Toro JA, Benítez T (2000) Overproduction of β-1,6-glucanase in Trichoderma harzianum is controlled by extrcellular acidic proteases and pH. Biochim Biophys Acta 1481:289–296

    PubMed  CAS  Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105(2):177–189

    Article  CAS  Google Scholar 

  • Fermor TR, Grant WD (1985) Degradation of fungal and actinomycete mycelia by Agaricus bisporus. J Gen Microbiol 131:1729–1734

    Google Scholar 

  • Fermor TR, Wood DA (1981) Degradation of bacteria by Agaricus bisporus and other fungi. J Gen Microbiol 126:377–387

    Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1996) Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinases-encoding gene prb1. Curr Gen 31:30–37

    Article  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Esterlla A (1993) Molecular characterization of the proteinase encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  PubMed  CAS  Google Scholar 

  • Goldman GH, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol by Trichoderma spp. Tibtech 12:478–482

    CAS  Google Scholar 

  • Griffin DH (1994) Chemistry of the fungal cell. In: Griffin DH (eds) Fungal physiology. Wiley-Liss, New York, pp 23–62

    Google Scholar 

  • Hanzen GG, Hause JA, Hubicki JA (1965) An automated system for the quantitative determination of proteolytic enzymes using azocasein. Ann N Y Acad Sci 130:761–768

    Article  Google Scholar 

  • Hellmich S, Schauz K (1988) Production of extracellular alkaline and neutral proteases of Ustilago maydis. Exp Mycol 12:223–232

    Article  CAS  Google Scholar 

  • Hislop EC, Paver JL, Keon JPR (1982) An acid protease produced by Monilinia fructigena in vitro and in infected apple fruits. J Gen Microbiol 128:799–807

    CAS  Google Scholar 

  • Leake JR, Read DJ (1990) Proteinase activity in mycorrhizal fungi. II The effect of mineral and organic nitrogen sources on induction of extracellular proteinase in Hymenoscyphus ericae (Read) Korf & Kernan. New Phytol 116:123–128

    Article  CAS  Google Scholar 

  • Markovich NA, Kononova GL (2003) Lytic enzymes of Trichoderma and their role in plant defense fram fungal diseases: a review. Appl Biochem Microbiol 39:341–351

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotropic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antogonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Mucha J, Dahm H, Strzelczyk E, Werner A (2006) Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi. Arch. Microbiol. 185:69–77

    Article  PubMed  CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Pavlukova EB, Belozersky MA, Dunaevsky YE (1998) Extracellular proteolytic enzymes of filamentous fungi. Biochemistry (Mosc) 63:899–928

    CAS  Google Scholar 

  • Sims GK, Wander MM (2002) Proteolytic activity under nitrogen or sulphur limitation. Appl Soil Ecol 19:217–221

    Article  Google Scholar 

  • Sreedhar L, Kobayashi DY Bunting TE, Hillman BI, Belanger FC (1999) Fungal proteinase expression in the interaction of plant pathogen Magnaporthe poae with its host. Gene 235:121–129

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Ramot O, Chernin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie van Leeuwenhoek 81:549–556

    Article  PubMed  CAS  Google Scholar 

  • Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycorrhiza 13:41–47

    Article  PubMed  Google Scholar 

  • Werner A, Zadworny M, Idzikowska K (2002) Interaction between Laccaria laccata and Trichoderma virens in co-culture and the rhizosphere of Pinus sylvestris grown in vitro. Mycorrhiza 12:139–145

    Article  PubMed  Google Scholar 

  • Zadworny M, Werner A, Idzikowska K (2004) Behaviour of the hyphae of Laccaria laccata in the presence of Trichoderma harzianum in vitro. Mycorrhiza 14:401–405

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Mucha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucha, J., Dahm, H. & Werner, A. Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi. Antonie van Leeuwenhoek 92, 137–142 (2007). https://doi.org/10.1007/s10482-006-9136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9136-0

Keywords

Navigation