Skip to main content
Log in

Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Ruminal microorganisms hydrogenate polyunsaturated fatty acids (PUFA) present in forages and thereby restrict the availability of health-promoting PUFA in meat and milk. The aim of this study was to investigate PUFA metabolism and the influence of PUFA on members of the ruminal microflora. Eleven of 26 predominant species of ruminal bacteria metabolised linoleic acid (LA; cis-9,cis-12–18:2) substantially. The most common product was vaccenic acid (trans-11–18:1), produced by species related to Butyrivibrio fibrisolvens. α-Linolenic acid (LNA; cis-9,cis-12,cis-15–18:3) was metabolised mostly by the same species. The fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n − 3)) and docosahexaenoic acid (DHA; 22:6(n − 3)) were not metabolised. Cellulolytic bacteria did not grow in the presence of any PUFA at 50 μg ml−1, nor did some butyrate-producing bacteria, including the stearate producer Clostridium proteoclasticum, Butyrivibrio hungatei and Eubacterium ruminantium. Toxicity to growth was ranked EPA > DHA > LNA > LA. Cell integrity, as measured using propidium iodide, was damaged by LA in all 26 bacteria, but to different extents. Correlations between its effects on growth and apparent effects on cell integrity in different bacteria were low. Combined effects of LA and sodium lactate in E. ruminantium and C. proteoclasticum indicated that LA toxicity is linked to metabolism in butyrate-producing bacteria. PUFA also inhibited the growth of the cellulolytic ruminal fungi, with Neocallimastix frontalis producing small amounts of cis-9,trans-11–18:2 (CLA) from LA. Thus, while dietary PUFA might be useful in suppressing the numbers of biohydrogenating ruminal bacteria, particularly C. proteoclasticum, care should be taken to avoid unwanted effects in suppressing cellulolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CLA:

Conjugated linoleic acid

DHA:

Docosahexaenoic acid

DTT:

Dithiothreitol

EPA:

Eicosapentaenoic acid

LA:

Linoleic acid

LNA:

α-Linolenic acid

OD:

Optical density

PI:

Propidium iodide

PUFA:

Polyunsaturated fatty acids

VA:

Vaccenic acid

References

  • AbuGhazaleh AA, Jenkins TC (2004) Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. J Dairy Sci 87:645–651

    PubMed  CAS  Google Scholar 

  • Ando A, Ogawa J, Kishino S, Shimizu S (2004) Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551. Enz Microb Technol 35:40–45

    Article  CAS  Google Scholar 

  • Avguštin G, Wallace RJ, Flint HJ (1997) Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J System Bacteriol 47:284–288

    Article  Google Scholar 

  • Banks A, Hilditch TP (1931) The glyceride structure of beef tallows. Biochem J 25:1168–1182

    PubMed  CAS  Google Scholar 

  • Ben Amor K, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216

    Article  CAS  Google Scholar 

  • Bryant MP, Robinson IM (1961) An improved nonselective culture medium for ruminal bacteria and its use in determining the diurnal variation in numbers of bacteria in the rumen. J Dairy Sci 44:1446–1456

    Article  CAS  Google Scholar 

  • Chaudhary LC, McKain N, Richardson AJ, Barbier M, Charbonnier J, Wallace RJ (2004) Screening for Fusocillus: factors that affect the detection of ruminal bacteria which form stearic acid from linoleic acid. Reprod Nutr Dev 44(Suppl 1):S65

    Google Scholar 

  • Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    Article  PubMed  CAS  Google Scholar 

  • Devillard E, McIntosh FM, Newbold CJ, Wallace RJ (2006) Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br J Nutr (in press)

  • Diez-Gonzalez F, Bond DR, Jennings E, Russell JB (1999) Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol 171:324–330

    Article  PubMed  CAS  Google Scholar 

  • Edwards JE, McEwan NR, Travis AJ, Wallace RJ (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Ant van Leeuwen 86:263–281

    Article  CAS  Google Scholar 

  • Edwards JE, McEwan NR, McKain N, Walker ND, Wallace RJ (2005) Influence of flavomycin on ruminal fermentation and microbial populations in sheep. Microbiology 151:717–725

    Article  PubMed  CAS  Google Scholar 

  • Galbraith H, Miller TB, Paton AM, Thompson JK (1971) Antibacterial activity of long-chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol 34:803–813

    PubMed  CAS  Google Scholar 

  • Griinari JM, Bauman DE (1999) Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz MP, Mossoba MM, Kramer JK, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. Champaign Illinois, AOCS Press, pp 180–200

    Google Scholar 

  • Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ(9)-desaturase. J Nutr 130:2285–2291

    PubMed  CAS  Google Scholar 

  • Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. London, Chapman and Hall, pp 382–426

    Google Scholar 

  • Hazlewood GP, Kemp P, Lauder D, Dawson RMC (1976) C18 unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid. Br J Nutr 35:293–297

    Article  PubMed  CAS  Google Scholar 

  • Henderson C (1973) The effects of fatty acids on pure cultures of rumen bacteria. J Agric Sci Camb 81:107–112

    Article  CAS  Google Scholar 

  • Hobson PN (1969) Rumen bacteria. In: Norris JR, Ribbons DW (eds) Methods in Microbiology, vol 3B. London, Academic Press

    Google Scholar 

  • Hudson JA, Cai Y, Corner RJ, Morvan B, Joblin KN (2000) Identification and enumeration of oleic acid and linoleic acid hydrating bacteria in the rumen of sheep and cows. J Appl Microbiol 88:286–292

    Article  PubMed  CAS  Google Scholar 

  • Jenkins TC (1994) Regulation of lipid metabolism in the rumen. J Nutr 124:1372S–1376S

    PubMed  CAS  Google Scholar 

  • Jiang J, Bjorck L, Fonden R (1998) Production of conjugated linoleic acid by dairy starter cultures. J Appl Microbiol 85:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kemp P, White RW, Lander DJ (1975) The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J Gen Microbiol 90:100–114

    PubMed  CAS  Google Scholar 

  • Keweloh H, Heipieper HJ (1996) Trans unsaturated fatty acids in bacteria. Lipids 31:129–137

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Liu RH, Rychlik JL, Russell JB (2002) The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J Appl Microbiol 92:976–982

    Article  PubMed  CAS  Google Scholar 

  • Kopečný J, Zorec M, Mrázek J, Kobayashi Y, Marinšek-Logar R (2003) Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J System Evol Microbiol 53:201–209

    Article  CAS  Google Scholar 

  • Marounek M, Skrivanova V, Savka O (2002) Effect of caprylic, capric and oleic acid on growth of rumen and rat caecal bacteria. J Anim Feed Sci 11:507–516

    Google Scholar 

  • McKain N, Chaudhary LC, Walker ND, Pizette F, Koppova I, McEwan NR, Kopečný J, Vercoe PE, Wallace RJ (2004) Relation between phylogenetic position and fatty acid metabolism of different Butyrivibrio isolates from the rumen. Repr Nutr Develop 44(Suppl. 1):S64

    Google Scholar 

  • Menotti A, Kromhout D, Blackburn H, Fidanza F, Buzina R, Nissinen A (1999) Food intake patterns and 25-year mortality from coronary heart disease: cross-cultural correlations in the Seven Countries Study. The Seven Countries Study Research Group. Eur J Epidemiol 15:507–515

    Article  PubMed  CAS  Google Scholar 

  • Offer NW, Marsden M, Phipps RH (2001) Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Anim Sci73:533–540

    CAS  Google Scholar 

  • Pariza MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79:1132S–1136S

    PubMed  CAS  Google Scholar 

  • Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88:1056–1064

    PubMed  CAS  Google Scholar 

  • Richardson AJ, Calder AG, Stewart CS, Smith A (1989) Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 9:5–8

    CAS  Google Scholar 

  • Scollan ND, Choi NJ, Kurt E, Fisher AV, Enser M, Wood JD (2001) Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br J Nutr 85:115–124

    PubMed  CAS  Google Scholar 

  • Shingfield KJ, Ahvenjarvi S, Toivonen V, Arola A, Nurmela KVV, Huhtanen P, Griinari JM (2003) Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim Sci 77:165–179

    CAS  Google Scholar 

  • Shorland FB, Weenink RO, Johns AT (1955) Effect of the rumen on dietary fat. Nat Lond 175:1129–1130

    Article  CAS  Google Scholar 

  • Stewart CS, McPherson CA, Cansunar E (1987) The effect of lasalocid on glucose uptake, hydrogen production and the solubilization of straw by the anaerobic rumen fungus Neocallimastix frontalis. Lett Appl Microbiol 5:5–7

    CAS  Google Scholar 

  • Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. London, Chapman and Hall, pp 10–72

    Google Scholar 

  • Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    Article  CAS  Google Scholar 

  • van de Vossenberg JL, Joblin KN (2003) Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett Appl Microbiol 37:424–428

    Article  PubMed  CAS  Google Scholar 

  • Viviani R (1970) Metabolism of long-chain fatty acids in the rumen. Adv Lipid Res 8:267–346

    PubMed  CAS  Google Scholar 

  • Wallace RJ, McKain N (1991) A survey of peptidase activity in rumen bacteria. J Gen Microbiol 137:2259–2264

    PubMed  CAS  Google Scholar 

  • Wąsowska I, Maia MRG, Niedźwiedzka KM, Czauderna M, Ramalho-Ribeiro JMC, Devillard E, Shingfield KJ, Wallace RJ (2006) Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Brit J Nutr 95:1199–1211

    Article  PubMed  CAS  Google Scholar 

  • White RW, Kemp P, Dawson RMC (1970) Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic and linolenic acid. Biochem J 116:767–768

    PubMed  CAS  Google Scholar 

  • Whitford MF, Forster RJ, Beard CE, Gong JH, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Rowett Research Institute receives funding from the Scottish Executive Environmental and Rural Affairs Department. L.C.C. was in receipt of a Wellcome Travelling Fellowship. We thank Nest McKain, David Brown and Maureen Annand for their technical help and expertise. M.R.G.M. received support from the Marie Curie Training Site, ‘Anaerobe’; we thank Jamie Newbold for his help and advice. M.R.G.M. was also supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal, with a PhD grant (SFRH/BD/6976/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, M., Chaudhary, L., Figueres, L. et al. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 91, 303–314 (2007). https://doi.org/10.1007/s10482-006-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9118-2

Keywords

Navigation