Skip to main content
Log in

Denitrification ability of rhizobial strains isolated from Lotus sp.

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Ten rhizobial strains isolated from Lotus sp. have been characterized by their ability to denitrify. Out of the 10 strains, the five slow-growing isolates grew well under oxygen-limiting conditions with nitrate as a sole nitrogen source, and accumulated nitrous oxide in the growth medium when acetylene was used to inhibit nitrous oxide reductase activity. All five strains contained DNA homologous to the Bradyrhizobium japonicum nirK, norBDQ and nosZ genes. In contrast, fast-growing lotus rhizobia were incapable of growing under nitrate-respiring conditions, and did not accumulate nitrous oxide in the growth medium. DNA from each of the five fast-growing strains showed a hybridization band with the B. japonicum nirK gene but not with norBDQ and nosZ genes. Partial 16S rDNA gene sequencing revealed that fast-growing strains could be identified as Mesorhizobium loti species and the slow-growers as Bradyrhizobium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedmar E.J., Robles E.F. and Delgado M.J. 2005. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem. Soc. Trans. 33: 145–148

    Article  Google Scholar 

  • Bedzyk L., Wang T. and Ye R.W. 1999. The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J. Bacteriol. 181: 2802–2806

    PubMed  CAS  Google Scholar 

  • Bonish P.M., Steel K.W. and Nevillie F.J. 1991. Denitrifying and symbiotic characteristics of Lotus–rhizobia from two New Zealand soils. New Zealand J. Agri. Res. 34: 221–226

    Google Scholar 

  • Bradford M.M. (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Christensen S. and Tiedje J.M. 1988. Sub-parts-per-billion nitrate method: use of an N2O–producing denitrifier to convert NO 3 or 15NO 3 to N2O. Appl. Environ. Microbiol. 54: 1409–1413

    PubMed  CAS  Google Scholar 

  • Cramm R., Siddiqui R.A. and Friedrich B. 1997. Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J. Bacteriol. 179: 6769–6777

    PubMed  CAS  Google Scholar 

  • Hendriks J., Oubrie A., Castresana J., Urbani A., Geminhardt S. and Saraste M. 2000. Nitric oxide reductase in bacteria. Biochim. Biophys. Acta 1459: 266–273

    Article  PubMed  CAS  Google Scholar 

  • Irisarri P., Milnitsky F., Monza J. and Bedmar E.J. 1996. Characterization of rhizobia nodulating Lotus subbiflorus from Uruguayan soils. Plant Soil 180: 39–47

    Article  CAS  Google Scholar 

  • Mesa S., Alché J.D., Bedmar E.J. and Delgado M.J. 2004. Expression of nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules. Physiol. Plant. 120: 205–211

    Article  PubMed  CAS  Google Scholar 

  • Mesa S., Velasco L., Manzanera M.E., Delgado M.J. and Bedmar E.J. 2002. Characterization of the nor CBQD genes, encoding nitric oxide reductase, in the nitrogen fixing bacterium Bradyrhizobium japonicum. Microbiology 148: 3553–3560

    PubMed  CAS  Google Scholar 

  • Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Habor, New York

    Google Scholar 

  • Monza J., Fabiano E. and Arias A. 1992. Characterization of an indigenous population of rhizobia nodulating Lotus corniculatus. Soil Biol. Biochem. 24: 241–247

    Article  CAS  Google Scholar 

  • Pohlmann A., Cramm R., Schmelz K. and Friedrich B. 2000. A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol. Microbiol. 38: 626–638

    Article  PubMed  CAS  Google Scholar 

  • Richardson D.J. and Watmough N.J. 1999. Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol. 3: 207–219

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Santamaría M., Agius F., Monza J., Gutierrez-Navarro A.M. and Corzo J. 1999. Comparative performance of enterobacterial repetitive intragenic consensus-polymerase chain reaction and lipopolyssacharide electrophoresis for the identification of Bradyrhizobium sp. (Lotus). FEMS Microbiol. Ecol. 28: 163–168

    Google Scholar 

  • Sawada H., Kuykendall L.D. and Young J.M. 2003. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Appl. Microbiol. 49: 155–179

    Article  PubMed  CAS  Google Scholar 

  • Steenhoudt O., Keijers V., Okon Y. and Vanderleyden J. 2001. Identification and charaterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch. Microbiol. 175: 344–352

    Article  PubMed  CAS  Google Scholar 

  • Toffanin A., Wu Q., Maskus M., Casella S., Abruña H.D. and Shapleigh J.P. 1996. Characterization of the gene encoding nitrite reductase and the physiological consecuences of its expression in the nondenitrifying Rhizobium hedysari strain HCNT1. Appl. Environ. Microbiol. 62: 4019–4025

    PubMed  CAS  Google Scholar 

  • Velasco L., Mesa S., Delgado M.J. and Bedmar E.J. 2001. Characterization of the nirK gene encoding the respiratory, Cu-containing nitrite reductase of Bradyrhizobium japonicum. Biochim Biophys Acta 1521: 130–134

    PubMed  CAS  Google Scholar 

  • Velasco L., Mesa S., Xu C.A., Delgado M.J. and Bedmar E.J. 2004. Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum. Antonie van Leuwenhoek 85: 229–235

    Article  CAS  Google Scholar 

  • Vincent J.M. 1974. Root-nodule symbiosis with Rhizobium. In: Quispel A. (ed.), The Biology of Nitrogen Fixation. American Elsevier Publishing Co., New York, NY, pp. 265–341

    Google Scholar 

  • Weisburg W.G., Barns S.M., Pelletier D.A. and Lane D.J. 1991. 16S ribosomal amplification for phylogenetic study. J. Bacteriol. 173: 697–703

    PubMed  Google Scholar 

  • Ye R.W., Fries M.R., Bezborodnikov S.G., Averill S.A. and Tidje J.M. 1993. Characterization of structural gene encoding a cooper-containing nitrate reductase and homology of this gene to DNA of the other denitrifiers. Appl. Environ. Microbiol. 59: 250–254

    PubMed  CAS  Google Scholar 

  • Yoshinari T. and Knowles R. 1976. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Comm. 69: 705–710

    Article  PubMed  CAS  Google Scholar 

  • Zablotowicz R.M., Eskwew D.L. and Focht D.D. 1978. Denitrification in rhizobia. Can. J. Microbiol. 24: 757–760

    Article  PubMed  CAS  Google Scholar 

  • Zumft W.G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533–616

    PubMed  CAS  Google Scholar 

  • Zurdo-Piñeiro J.L., Velázquez E., Lorite M.J., Brelles-Mariño G., Schröder E.C., Bedmar E.J., Mateos P.F. and Martínez-Molina E. 2004. Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst. Appl. Microbiol. 27: 469–477

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants BMC2002-04126-C03-02 and FIT-050000-2001-30 from Dirección General de Investigación to E.J. Bedmar. The support of Junta de Andalucía (PAI/CVI-275) and Convenio de Cooperación CSIC (Spain) – Universidad de la República (Uruguay) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Monza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monza, J., Irisarri, P., Díaz, P. et al. Denitrification ability of rhizobial strains isolated from Lotus sp.. Antonie Van Leeuwenhoek 89, 479–484 (2006). https://doi.org/10.1007/s10482-005-9046-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9046-6

Keywords

Navigation