Skip to main content

Advertisement

Log in

Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agata N., Ohta M., Mori M., Isobe M. (1995a). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129:17–19

    CAS  Google Scholar 

  • Agata N., Ohta M., Arakawa Y., Mori M. (1995b). The Bcet gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141:983–988, Part 4

    Article  CAS  Google Scholar 

  • Asano S., Nukumizu Y., Bando H., Iizuka T., Yamamoto T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis: Appl. Environ. Microbiol. 63:1054–1057

    PubMed  CAS  Google Scholar 

  • Baida G.E., Kuzmin N.P. (1995). Cloning and primary structure of a new hemolysin gene from Bacillus-cereus. Biochim. Biophys. Acta 1264:151–154

    PubMed  Google Scholar 

  • Baida G., Budarina Z.I., Kuzmin N.P., Solonin A.S. (1999). Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 180:7–14

    Article  PubMed  CAS  Google Scholar 

  • Bavykin S.G., Lysov Y.P., Zakhariev V., Kelly J.J., Jackman J., Stahl D.A., Cherni A. (2004). Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J. Clin. Microbiol. 42:3711–3730

    Article  PubMed  CAS  Google Scholar 

  • Bell J.A., Friedman S.B. (1994). Genetic-structure and diversity within local-populations of Bacillus mycoides. Evolution 48:1698–1714

    Article  Google Scholar 

  • Budarina Z.I., Sinev M.A., Mayorov S.G., Tomashevski A.Y., Shmelev I.V., Kuzmin N.P. (1994). Hemolysin-II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch. Microbiol. 161:252–257

    PubMed  CAS  Google Scholar 

  • Cheun H.I., Makino S.I., Wataral M., Shirahata T., Uchida I., Takeshi K. (2001). A simple and sensitive detection system for Bacillus anthracis in meat and tissue. J. Appl. Microbiol. 91:421–426

    Article  PubMed  CAS  Google Scholar 

  • Christiansson A., Bertilsson J., Svensson B. (1999). Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period. J. Dairy Sci. 82:305–314

    Article  PubMed  CAS  Google Scholar 

  • Damgaard P.H., Larsen H.D., Hansen B.W., Bresciani J., Jorgensen K. (1996). Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23:146–150

    Article  PubMed  CAS  Google Scholar 

  • Ehling-Schulz M., Fricker M., Scherer S. (2004). Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48:479–487

    Article  PubMed  CAS  Google Scholar 

  • Ehling-Schulz M., Vukov N., Schulz A., Shaheen R., Andersson M., Martlbauer E., Scherer S. (2005). Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71:105–113

    Article  PubMed  CAS  Google Scholar 

  • Farrar W.E. and Reboli A.C. 1991. The Genus Bacillus – Medical. The Prokaryotes, 2nd ed. Springer Verlag, New York, pp. 1746–1768

  • Francis K.P., Mayr R., von Stetten F., Stewart G.S.A.B., Scherer S. (1998). Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl. Environ. Microbiol. 64:3525–3529

    PubMed  CAS  Google Scholar 

  • Gilmore M.S., Cruzrodz A.L., Leimesterwachter M., Kreft J., Goebel W. (1989). A Bacillus-cereus cytolytic determinant, cereolysin-AB, which comprises the phospholipase-C and sphingomyelinase genes-nucleotide-sequence and genetic-linkage. J. Bacteriol. 171:744–753

    PubMed  CAS  Google Scholar 

  • Glare T. R. and O’Callaghan M. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley & Sons, Ltd

  • Granum P. E. 2001. Bacillus cereus. Food Microbiology: Fundamentals and Frontiers, 2nd. ed. ASM Press, pp. 373–381

  • Granum P.E., O’Sullivan K., Lund T. (1999). The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225–229

    PubMed  CAS  Google Scholar 

  • Guinebretiere M.H., Broussole V., Nguyen-The C. (2002). Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40:3053–3056

    Article  PubMed  CAS  Google Scholar 

  • Hansen B.M., Hendriksen N.B. (1998). Bacillus thuringiensis and B. cereus toxins. IOBC Bull. 21(4):221–224

    Google Scholar 

  • Hansen B.M., Hendriksen N.B. (2001). Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67:185–189

    Article  PubMed  CAS  Google Scholar 

  • Hansen B.M., Hoiby P.E., Jensen G.B., Hendriksen N.B. (2003). The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol. Lett. 223:21–24

    Article  PubMed  CAS  Google Scholar 

  • Hansen B.M., Damgaard P.H., Eilenberg J., Pedersen J.C. (1998). Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invert. Pathol. 71:106–114

    Article  CAS  Google Scholar 

  • Hansen B.M., Leser T.D., Hendriksen N.B. (2001). Polymerase chain reaction assay for the detections of Bacillus cereus group cells. FEMS Microbiol. Lett. 202:209–213

    Article  PubMed  CAS  Google Scholar 

  • Harmon S.M. (1982). New method for differentiating members of the Bacillus-cereus group – collaborative study. J. Assoc. Off. Anal. Chem. 65:1134–1139

    PubMed  CAS  Google Scholar 

  • Heinrichs J.H., Beecher D.J., Macmillan J.D., Zilinskas B.A. (1993). Molecular-cloning and characterization of the HBLA gene encoding the B-component of hemolysin BL from Bacillus-cereus. J. Bacteriol. 175:6760–6766

    PubMed  CAS  Google Scholar 

  • Helgason E., Okstad O.A., Caugangt D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolsto A.B. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - One species on the basis for genetic evidence. Appl. Environ. Microbiol. 66:2627–2630

    Article  PubMed  CAS  Google Scholar 

  • Hoffmaster A.R., Ravel J., Rasko D.A., Chapman G.D., Chute M.D., Marston C.K., De B.K., Sacchi C.T., Fitzgerald C., Mayer L.W., Maiden M.C.J., Priest F.G., Barker M., Jiang L.X., Cer R.Z., Rilstone J., Peterson S.N., Weyant R.S., Galloway D.R., Read T.D., Popovic T., Fraser C.M. (2004). Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. PNAS 101:8449–8454

    Article  PubMed  CAS  Google Scholar 

  • Hsieh Y.M., Sheu S.J., Chen Y.L., Tsen H.Y. (1999). Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B-cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 87:481–490

    Article  PubMed  CAS  Google Scholar 

  • Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N., Lapidus A., Chu L., Mazur M., Goltsman E., Larsen N., D’Souza M., Walunas T., Grechkin Y., Pusch G., Haselkorn R., Fonstein M., Ehrlich S.D., Overbeek R., Kyrpides N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    Article  PubMed  CAS  Google Scholar 

  • Jensen G.B., Hansen B.M., Eilenberg J., Mahillon J. (2003). The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5:631–640

    Article  PubMed  CAS  Google Scholar 

  • Kuppe A., Evans L.M., McMillen D.A., Griffith O.H. (1989). Phosphatidylinositol-specific phospholipase-C of Bacillus-cereus – cloning, sequencing, and relationship to other phospholipases. J. Bacteriol. 171:6077–6083

    PubMed  CAS  Google Scholar 

  • Lechner M., Kupke T., Stefanovic S., Gotz F. (1989). Molecular characterization and sequence of phosphatidylinostitol-specific phospholipase C of Bacillus thuringiensis. Mol. Microbiol. 3:621–626

    Article  PubMed  CAS  Google Scholar 

  • Lechner S., Mayr R., Francis K.P., Pruss B.M., Kaplan T., Wiessner-Gunkel E., Stewartz G.S.A.B., Scherer S. (1998). Bacillus weihenstephanensis sp nov is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst Bacteriol. 48:1373–1382

    PubMed  CAS  Google Scholar 

  • Lund T., De Buyser M.L., Granum P.E. (2000). A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38:254–261

    Article  PubMed  CAS  Google Scholar 

  • Mantynen V., Lindstrom K. (1998). A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 64:1634–1639

    PubMed  CAS  Google Scholar 

  • Margulis L., Jorgensen J.Z., Dolan S., Kolchinsky R., Rainey F.A., Lo S.C. (1998). The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. PNAS 95:1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Miles G., Bayley H., Cheley S. (2002). Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein Sci. 11:1813–1824

    Article  PubMed  CAS  Google Scholar 

  • Nakamura L.K. (1998). Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48:1031–1035

    PubMed  CAS  Google Scholar 

  • Nakamura L.K., Jackson M.A. (1995). Clarification of the taxonomy of Bacillus mycoides. Int. J. Syst. Bacteriol. 45:46–49

    Article  CAS  Google Scholar 

  • Pepper I.L., Gentry T.J. (2002). Incidence of Bacillus anthracis in soil. Soil Sci. 167:627–635

    Article  CAS  Google Scholar 

  • Pruss B.M., Francis K.P., von Stetten F., Scherer S. (1999a). Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psyshrotolerant strains of the Bacillus cereus group. J. Bact. 181:2624–2630

    CAS  Google Scholar 

  • Pruss B.M., Dietrich R., Nibler B., Martlbauer E., Scherer S. (1999b). The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 65:5436–5442

    CAS  Google Scholar 

  • Rasko D.A., Ravel J., Okstad O.A., Helgason E., Cer R.Z., Jiang L.X., Shores K.A., Fouts D.E., Tourasse N.J., Angiuoli S.V., Kolonay J., Nelson W.C., Kojsto A.B., Fraser C.M., Read T.D. (2004). The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pX01. NAR 32:977–988

    Article  PubMed  CAS  Google Scholar 

  • Ryan P.A, Macmillan J.D., Zilinskas B.A. (1997). Molecular cloning and characterization of the genes encoding the L(1) and L(2) components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179:2551–2556

    PubMed  CAS  Google Scholar 

  • Stenfors L.P., Granum P.E. (2001). Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197:223–228

    Article  PubMed  CAS  Google Scholar 

  • Stenfors L.P., Mayr R., Scherer S., Granum P.E. (2002). Pathogenic potential of fifty Bacillus weihenstephaninsis strains. FEMS Microbiol. Lett. 215:47–51

    Article  PubMed  CAS  Google Scholar 

  • Tegiffel M.C., Beumer R.R., Slaghuis B.A., Rombouts F.M. (1995). Occurrence and characterization of (Psychrotrophic) Bacillus-cereus on farms in the Netherlands. Neth. Milk Dairy J. 49:125–138

    Google Scholar 

  • Travers R.S., Martin P.A.W., Reichelderfer C.F. (1987). Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53:1263–1266

    PubMed  CAS  Google Scholar 

  • Vilas-Boas G., Sanchis V., Lereclus D., Lemos M.V.F., Bourguet D. (2002). Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 68:1414–1424

    Article  PubMed  CAS  Google Scholar 

  • von Stetten F, Francis K.P., Lechner S., Neuhaus K., Scherer S. (1998). Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. J. Microbiol. Methods 34:99–106

    Article  Google Scholar 

  • von Stetten F., Mayr R., Scherer S. (1999). Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ. Microbiol. 1:503–515

    Article  PubMed  Google Scholar 

  • Willumsen P.A., Johansen J.E., Karlson U., Hansen B.M. (2005). Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Appl. Microbiol. Biotechnol. 67:420–428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by a grant from the Danish Ministry of Food, Agriculture and Fishery (FØS100-DMU-5). We thank Bente R. Hansen and Lillian F. Larsen for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Bohse Hendriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendriksen, N.B., Hansen, B.M. & Johansen, J.E. Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Van Leeuwenhoek 89, 239–249 (2006). https://doi.org/10.1007/s10482-005-9025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9025-y

Keywords

Navigation