Antonie van Leeuwenhoek

, Volume 89, Issue 2, pp 221–237 | Cite as

Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors

  • Weiwen Zhang
  • David E. Culley
  • Johannes C. M. Scholten
  • Mike Hogan
  • Luigi Vitiritti
  • Fred J. Brockman
Article

Abstract

Whole-genome microarrays of Desulfovibrio vulgaris were used to determine relative transcript levels in cells grown to exponential or stationary phase on a medium containing either lactate or formate as electron donor. The results showed that 158 and 477 genes were differentially expressed when comparing exponential to stationary phase in lactate- or formate-based media, respectively; and 505 and 355 genes were responsive to the electron donor used at exponential or stationary phase, respectively. Functional analyses suggested that the differentially regulated genes were involved in almost every aspect of cellular metabolism, with genes involved in protein synthesis, carbon, and energy metabolism being the most regulated. The results suggested that HynBA-1 might function as a primary periplasmic hydrogenase responsible for oxidation of H2 linked to the proton gradient in lactate-based medium, while several periplasmic hydrogenases including HynBA-1 and Hyd might carry out this role in formate-based medium. The results also indicated that the alcohol dehydrogenase and heterodisulfide reductase catalyzed pathway for proton gradient formation might be actively functioning for ATP synthesis in D. vulgaris. In addition, hierarchical clustering analysis using expression data across different electron donors and growth phases allowed the identification of the common electron donor independent changes in gene expression specifically associated with the exponential to stationary phase transition, and those specifically associated with the different electron donors independent of growth phase. The study provides the first global description and functional interpretation of transcriptomic response to growth phase and electron donor in D. vulgaris.

Keywords

Desulfovibrio vulgaris Electron donors Microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10482_2005_9024_MOESM1_ESM.pdf (115 kb)
Supplementary material is available for this article at http://www.dx.doi.org/10.1007/s10482-005-9024-z and is accessible for authorized users.

References

  1. Albert T.J., Norton J., Ott M., Richmond T., Nuwaysir K., Nuwaysir E.F., Stengele K.P., Green R.D. (2003) Light-directed 5′−>3′ synthesis of complex oligonucleotide microarrays. Nucleic Acids Res. 31:e35CrossRefPubMedGoogle Scholar
  2. Atlung T., Nielsen A., Hansen F.G. (1989) Isolation, characterization and nucleotide sequence of appY, a regulatory gene for growth-phasedependent gene expression in Escherichia coli. J. Bacteriol. 171:1683–1691PubMedGoogle Scholar
  3. Fareleira P., Legall J., Xavier A.V., Santos H. (1997) Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. J. Bacteriol. 179:3972–3980PubMedGoogle Scholar
  4. Flachmann R., Kunz N., Seifert J., Gutlich M., Wientjes F.J., Laufer A., Gassen H.G. (1988) Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. Eur. J. Biochem. 175:221–228CrossRefPubMedGoogle Scholar
  5. Gallegos M.T., Schleif R., Bairoch A., Hofmann K., Ramos J.L. (1997) Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61:393–410PubMedGoogle Scholar
  6. Hahnenberger K.M., Shapiro L. (1987) Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus. J. Mol. Biol. 194:91–103CrossRefPubMedGoogle Scholar
  7. Hansmann S., Martin W. (2000) Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int. J. Syst. Evol. Microbiol. 50:1655–1663PubMedGoogle Scholar
  8. Haveman S.A., Brunelle V., Voordouw J.K., Voordouw G., Heidelberg J.F., Rabus R. (2003) Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J. Bacteriol. 185:4345–4353CrossRefPubMedGoogle Scholar
  9. Hedderich R., Koch J., Linder D., Thauer R.K. (1994) The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thoredoxin reductases. Eur. J. Biochem. 225:253–261CrossRefPubMedGoogle Scholar
  10. Heidelberg J.F., Seshadri R., Haveman S.A., Hemme C.L., Paulsen I.T., Kolonay J.F., Eisen J.A., Ward N., Methe B., Brinkac L.M., Daugherty S.C., Deboy R.T., Dodson R.J., Durkin A.S., Madupu R., Nelson W.C., Sullivan S.A., Fouts D., Haft D.H., Selengut J., Peterson J.D., Davidsen T.M., Zafar N., Zhou L., Radune D., Dimitrov G., Hance M., Tran K., Khouri H., Gill J., Utterback T.R., Feldblyum T.V., Wall J.D., Voordouw G., Fraser C.M. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22:554–559CrossRefPubMedGoogle Scholar
  11. Hoog J.O., von Bahr-Lindstrom H., Jornvall H., Holmgren A., (1986) Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli. Gene 43:13–21CrossRefPubMedGoogle Scholar
  12. Hyland S.A., Eveland S.S., Anderson M.S. (1997) Cloning, expression, and purification of UDP-3-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: a metalloamidase of the lipid A biosynthesis pathway. J. Bacteriol. 179:2029–2037PubMedGoogle Scholar
  13. Keener J., Nomura M. (1996) Regulation of ribosome synthesis. In: Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbarger H.E. (eds) Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp 1417–1431Google Scholar
  14. Keon R.G., Fu R., Voordouw G. (1997) Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch. Microbiol. 167:376–383CrossRefPubMedGoogle Scholar
  15. Lissolo T., Choi E.S., LeGall J., Peck H.D. Jr. (1986) The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). Biochem. Biophys. Res. Commun. 139:701–708CrossRefPubMedGoogle Scholar
  16. Lumppio H.L., Shenvi N.V., Garg R.P., Summers A.O., Kurtz D.M. Jr. (1997) A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). J. Bacteriol. 179:4607–4615PubMedGoogle Scholar
  17. Lumppio H.L., Shenvi N.V., Summers A.O., Voordouw G., Kurtz D.M. Jr. (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J. Bacteriol. 183:101–108CrossRefPubMedGoogle Scholar
  18. Maklashina E., Berthold D.A., Cecchini G. (1998) Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J. Bacteriol. 180:5989–5996PubMedGoogle Scholar
  19. Martin J.F., Barreiro C., Gonzalez-Lavado E., Barriuso M. (2003) Ribosomal RNA and ribosomal proteins in corynebacteria. J. Biotechnol. 104:41–53CrossRefPubMedGoogle Scholar
  20. Melin L., Rutberg L., von Gabain A. (1989) Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol. 171:2110–2115PubMedGoogle Scholar
  21. Meuer J., Bartoschek S., Koch J., Kunkel A., Hedderich R. (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur. J. Biochem. 265:325–335CrossRefPubMedGoogle Scholar
  22. Meuer J., Kuettner H.C., Zhang J.K., Hedderich R., Metcalf W.W. (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. (USA) 99:5632–5637CrossRefGoogle Scholar
  23. Moran A.J., Doran J.L., Wu J., Treit J.D., Ekpo P., Kerr V.J., Roberts A.D., Orme I.M., Galant S., Ress S.R., Nano E.E. (1999) Identification of novel immunogenic Mycobacterium tuberculosis peptides that stimulate mononuclear cells from immune donors. FEMS Microbiol. Lett. 177:123–130PubMedCrossRefGoogle Scholar
  24. Mulliez E., Ollagnier S., Fontecave M., Eliasson R., Reichard P. (1995) Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli. Proc. Natl. Acad. Sci. (USA) 92:8759–8762CrossRefGoogle Scholar
  25. Nuwaysir E.F., Huang W., Albert T.J., Singh J., Nuwaysir K., Pitas A., Richmond T., Gorski T., Berg J.P., Ballin J., McCormick M., Norton J., Pollock T., Sumwalt T., Butcher L., Porter D., Molla M., Hall C., Blattner F., Sussman M.R., Wallace R.L., Cerrina F., Green R.D. (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12:1749–1755CrossRefPubMedGoogle Scholar
  26. Odom J.M., Peck H.D. Jr. (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria Desulfovibrio sp. FEMS Microbiol. Lett. 12:47–50CrossRefGoogle Scholar
  27. Peck H.D. Jr. (1966) Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 22:112–118CrossRefPubMedGoogle Scholar
  28. Peck H.D., Jr. (1994) Bioenergetic strategies of the sulfate-reducing bacteria. In: Odom J.M., Singleton R. Jr. (eds) The Sulfate-reducing Bacteria: Contemporary Perspectives. Springer Verlag, New York, pp 41–75Google Scholar
  29. Pieulle L., Magro V., Hatchikian E.C. (1997) Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J. Bacteriol. 179:5684–5692PubMedGoogle Scholar
  30. Rabus R., Hansen T. and Widdel F. 2001. Dissimilatory sulfate-and sulfur-reducing prokaryotes. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H. and Stackebrandt E. (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Heidelberg, Springer Science Online (http://www.prokaryotes.com)
  31. Shuto H., Fukui T., Saito T., Shirakura Y., Tomita K. (1981) An NAD-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Eur. J. Biochem. 118:53–59CrossRefPubMedGoogle Scholar
  32. Stringfellow J.M., Turpin B., Cooper R.A. (1995) Sequence of the Escherichia coli C homoprotocatechuic acid degradative operon completed with that of the 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase-encoding gene (hpcH). Gene 166:73–76CrossRefPubMedGoogle Scholar
  33. Van Schaik W., Zwietering M.H., De Vos W.M., Abee T. (2004) Identification of sigma B-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis. J. Bacteriol. 186:4100–4109CrossRefPubMedGoogle Scholar
  34. Voordouw G. (1995) The Genus Desulfovibrio: The Centennial. Appl. Environ. Microbiol. 61:813–2819PubMedGoogle Scholar
  35. Voordouw G. (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 184:5903–5911CrossRefPubMedGoogle Scholar
  36. Voordouw G., Brenner S. (1985) Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 148:515–520CrossRefPubMedGoogle Scholar
  37. Ye R.W., Wang T., Bedzyk L., Croker K.M. (2001) Applications of DNA microarrays in microbial systems. J. Microbiol. Methods 47:257–272CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Weiwen Zhang
    • 1
  • David E. Culley
    • 1
  • Johannes C. M. Scholten
    • 1
  • Mike Hogan
    • 2
  • Luigi Vitiritti
    • 2
  • Fred J. Brockman
    • 1
  1. 1.Department of MicrobiologyPacific Northwest National LaboratoryRichlandUSA
  2. 2.NimbleGen Systems, Inc.MadisonUSA

Personalised recommendations