Skip to main content
Log in

The isoepoxydon dehydrogenase gene of the patulin metabolic pathway differs for Penicillium griseofulvum and Penicillium expansum

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Purified DNA from isolates of Penicillium griseofulvum and P. expansum was used as a template to amplify a 600-bp fragment of the isoepoxydon dehydrogenase (idh) gene of the patulin biosynthetic pathway. Primer pairs designed from the P. griseofulvum gene (GenBank accession AF006680) to amplify specific regions of the idh gene yielded similar-sized bands for all strains. Asymmetrical amplification produced DNA products for sequencing and DNA sequences were translated to produce the corresponding amino acid sequences. After removal of two introns present in the region sequenced, amino acid sequences were compared. There were 12 amino acid differences between P. expansum and P. griseofulvum in the coding region. The differences correlated with the amount of patulin previously produced in culture, with strains of P. griseofulvum producing the greatest amounts of patulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck J., Ripka S., Siegner A., Schiltz E. and Schweizer E. (1990). The multifunctional 6- methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur. J. Biochem. 192: 487–498

    Article  PubMed  CAS  Google Scholar 

  • Black D.L. (2000). Protein diversity from alternative splicing: A challenge for bioinformatics and post-genome biology. Cell 103: 367–370

    Article  PubMed  CAS  Google Scholar 

  • Dombrink-Kurtzman M.A. and Blackburn J.A. (2005). Evaluation of several culture media for production of patulin by Penicillium species. Int. J. Food Microbiol. 98: 241–248

    Article  PubMed  CAS  Google Scholar 

  • Edwards S.G., O’Callaghan J. and Dobson A.D.W. (2002). PCR-based detection and quantification of mycotoxigenic fungi. Mycol. Res. 106: 1005–1025

    Article  CAS  Google Scholar 

  • Fedeshko R.W. (1992). Polyketide enzymes and genes in Penicillium urticae. Ph.D. Dissertation, University of Calgary, Calgary, Alberta, Canada

  • Filtenborg O., Frisvad J.C. and Thrane U. (1996). Moulds in food spoilage. Int. J. Food Microbiol. 33: 85–102

    Article  PubMed  CAS  Google Scholar 

  • Frisvad J.C. and Filtenborg O. (1983). Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Appl. Environ. Microbiol. 46: 1301–1310

    PubMed  CAS  Google Scholar 

  • Frisvad J.C. and Filtenborg O. (1989). Terverticillate penicillia: Chemotaxonomy and mycotoxin production. Mycologia 81: 837–861

    Article  CAS  Google Scholar 

  • Frisvad J.C. and Samson R.A. (2004). Polyphasic taxonomy of Penicillium subspecies Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 49: 1–174

    Article  Google Scholar 

  • Moake M.M., Padilla-Zakour O.I. and Worobo R.W. (2005). Comprehensive review of patulin control methods in foods. Comprehensive Rev. Food Sci. Food Safety 1: 8–21

    Article  Google Scholar 

  • Norstadt F.A. and McCalla T.M. (1969). Patulin production by Penicillium urticae Bainer in batch culture. Appl. Microbiol. 17: 193–196

    PubMed  CAS  Google Scholar 

  • Paterson R.R.M. (2004). The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycological Res. 108: 1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Paterson R.R.M., Archer S., Kozakiewicz Z., Lea A., Locke T. and O’Grady E. (2000). A gene probe for the patulin metabolic pathway with potential for use in patulin and novel disease control. Biocontrol. Sci. Tech. 10: 509–512

    Article  Google Scholar 

  • Paterson R.R.M., Kozakiewicz Z., Locke T., Brayford D. and Jones S.C.B. (2003). Novel use of the isoepoxydon dehydrogenase gene probe of the patulin metabolic pathway and chromatography to test penicillia isolated from apple production systems for the potential to contaminate apple juice with patulin. Food Microbiol. 20: 359–364

    Article  CAS  Google Scholar 

  • Paterson R.R.M., Venancio A. and Lima N. (2004). Solutions to Penicillium taxonomy crucial to mycotoxin research and health. Res. Microbiol. 155: 507–513

    Article  PubMed  CAS  Google Scholar 

  • Pazoutova S., Linka M., Storkova S. and Schwab H. (1997). Polyketide synthase gene pksM from Aspergillus terreus expressed during growth phase. Folia Microbiol. (Praha) 42: 419–430

    CAS  Google Scholar 

  • Peterson S.W. (2000). Phylogenetic analysis of Penicillium based on ITS and LSU-rDNA sequences. In: Samson RA, Pitt JI, (eds) Classification of Penicillium and Aspergillus: Integration of modern taxonomic methods. Harwood Publishers, Reading, UK, pp. 163–178

    Google Scholar 

  • Rosenberger D. (1997). Recent research and changing postharvest decays of apples. Proc. Harvesting, Handling, and Storage Workshop. Northeast Reg. Agric. Eng. Serv. Publ. NRAES-112. 14 Aug 1997. Cornell University, Ithaca, NY

  • Sadusky T., Newman A.J. and Dibb N.J. (2004). Exon junction sequences as cryptic splice sites: Implications for intron origin. Curr. Biol. 14: 505–509

    PubMed  CAS  Google Scholar 

  • Scrutton N.S., Berry A. and Perham R.N. (1990). Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343: 38–43

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi J. and Gaucher G.M. (1978). Identification of phyllostine as an intermediate of the patulin pathway in Penicillium urticae. Biochemistry 17: 1785–1791

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi J. and Gaucher G.M. (1979). Patulin biosynthesis: the metabolism of phyllostine and isoepoxydon by cell-free preparations from Penicillium urticae. Can. J. Microbiol. 25: 881–887

    Article  PubMed  CAS  Google Scholar 

  • Venkatasubbaiah P. and Chilton W.S. (1992). An epoxydon-derived ester from Phoma sp pathogenic to rhubarb. J. Nat. Prod. 55:639–643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are given to Amy Engberg, Eleanor Basehoar-Powers, Jody Robinson and Judy Blackburn for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Dombrink-Kurtzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dombrink-Kurtzman, M.A. The isoepoxydon dehydrogenase gene of the patulin metabolic pathway differs for Penicillium griseofulvum and Penicillium expansum . Antonie Van Leeuwenhoek 89, 1–8 (2006). https://doi.org/10.1007/s10482-005-9002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9002-5

Keywords

Navigation