Antonie van Leeuwenhoek

, Volume 88, Issue 3–4, pp 199–206 | Cite as

Cellular Lipid Fatty Acid Pattern Heterogeneity Between Reference and Recent Food Isolates of Listeria Monocytogenes as a Response to Cold Stress

  • Margarida Ribeiro Neunlist
  • Michel Federighi
  • Michel Laroche
  • Danièle Sohier
  • Gilles Delattre
  • Christine Jacquet
  • Nour-Eddine Chihib


Cells of four reference strains (Scott A, LO 28, CNL 895807 and ATCC 19115) and of five recent food isolates (A00M011, A00M018, A00M087, A00M092 and A00M123) of Listeria monocytogenes were grown until late exponential phase in Brain Heart Broth at two different temperatures (37 °C and 4 °C). Our results show that significant differences exist between the cellular lipid fatty acid profile of reference and recent food isolates. Like the reference strains, and in keeping with previous reports on the cellular lipid fatty acid profile of L. monocytogenes, the recent food isolates were characterised by the presence of ai15:0, i15:0 and ai17:0. In addition, the fatty acid ai13:0 was observed in all of the recent food isolates grown at 4 °C, whereas only two reference strains, Scott A and LO 28, showed ai13:0 in their cellular lipid fatty acid profile at 4 °C. When grown at 4 °C, the recent food isolates showed a mean aiC15/aiC17 ratio of 66, while reference strains were characterised by significantly lower ratios, ranging between 4.3 (ATCC 19115) and 28.9 (Scott A). These results showed that all of the recent food isolates, Scott A and LO28 strains use chain length and anteiso-branching (ai15:0) as their major response to cold temperature adaptation. However, the cold adaptation response of reference strains CNL 895807 and ATCC 19115 appears to be different.


Cellular lipid fatty acid Listeria monocytogenes Low temperature Reference strains Recent food isolates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annous, B.A., Becker, L.A., Bayles, D.O., Labeda, D.P., Wilkinson, B.J. 1997Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperaturesAppl. Environ. Microbiol.6338873894PubMedGoogle Scholar
  2. Bajard, S., Rosso, L., Fardel, G., Flandrois, J. P. 1996The particular behaviour of Listeria monocytogenes under sub-optimal conditionsInt. J. Food Microbiol.29201211CrossRefPubMedGoogle Scholar
  3. Bayles, D.O., Annous, B.A., Wilkinson, B.J. 1996Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperaturesAppl. Environ. Microbiol.6211161119PubMedGoogle Scholar
  4. Chihib, N.E., Ribeiroda Silva, M., Delattre, G., Laroche, M., Federighi, M. 2003Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditionsFEMS. Microbiol. Lett.218155160CrossRefPubMedGoogle Scholar
  5. Cronan, J.E., Felmann, E.P. 1975Physical properties of membrane lipids: biological relevance and regulationBacteriol. Rev.39232256PubMedGoogle Scholar
  6. Dykes, G.A., Moorhead, S.M. 2000Survival of osmotic and acid stress by Listeria monocytogenes strains of clinical or meat originInt. J. Food Microbiol.56161166CrossRefPubMedGoogle Scholar
  7. Edgcomb, M.R., Sirimanne, S., Wilkinson, B.J., Drouin, P., Morse, R.D. 2000Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes Biochim. Biophys. Acta.14633142PubMedGoogle Scholar
  8. Farber, J.M., Coates, F., Daley, E. 1992Minimum water activity requirements for the growth of Listeria monocytogenes Lett. Appl. Microbiol.15103105Google Scholar
  9. Farber, J.M., Peterkin, P.I. 1991Listeria monocytogenesa Food-Borne PathogenMicrobiol Rev.55476511PubMedGoogle Scholar
  10. Fischer, W., Leopold, K. 1999Polar lipids of four Listeria species containing l-lysylcardiolipin, a novel lipid structureand other unique phospholipidsInt. J. Syst. Bacteriol.49653662PubMedCrossRefGoogle Scholar
  11. Guyer, S., Jemmi, T. 1991Behavior of Listeria monocytogenes during fabrication and storage of experimentally contaminated smoked salmonAppl. Environ. Microbiol.5715231527PubMedGoogle Scholar
  12. Jones, S.L., Drouin, P., Wilkinson, B.J., Morse, P.D.,II 2002Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitivebranched-chain-fatty-acid-deficient mutant of Listeria monocytogenes Arch. Microbiol.177217222CrossRefPubMedGoogle Scholar
  13. Julák, J., Ryska, M., Mencikova, E. 1989Cellular fatty aldehydes of Listeria Erysipelothrix Zentralbl. Bakteriol.272171180PubMedGoogle Scholar
  14. Kaneda, T. 1991Iso- and anteiso-fatty acids in bacteria : biosynthesis, function, and taxonomic significanceMicrobiol. Rev.55288302PubMedGoogle Scholar
  15. Low, J.C., Donachie, W. 1997A review of Listeria monocytogenes and listeriosisVet. J.15335CrossRefGoogle Scholar
  16. Mazzotta, A.S., Montville, T.J. 1997Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 °C and 30 °CJ. Appl. Microbiol.823238PubMedGoogle Scholar
  17. Miller, L., Berger, T. 1985Bacterial identification by gas chromatography of whole cell fatty acids Hewlett-Packard Application Note 228 – 241Hewlett-PackardPalo AltoGoogle Scholar
  18. Ninet, B., Traitler, H., Aeschlimann, J.M., Horman, I., Hartmann, D., Bille, J. 1992Quantitative analysis of cellular fatty acids (CFAs) composition of the seven species of Listeria Syst. Appl. Microbiol.157681Google Scholar
  19. Nichols, D.S., Presser, K.A., Olley, J., Ross, T., McMeekin, T.A. 2002Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes Appl. Environ. Microbiol.6828092813CrossRefPubMedGoogle Scholar
  20. Püttman, M., Ade, N., Hof, H. 1993Dependence of fatty acid composition of Listeria spp. on growth temperatureRes. Microbiol.144279283Google Scholar
  21. Raines, L.J., Moss, C.W., Farshtchi, D., Pittman, B. 1968Fatty Acids of Listeria monocytogenes J. Bacteriol.9621752177PubMedGoogle Scholar
  22. Russell, N.J. 2002Bacterial membranes: the effects of chill storage and food processing An overviewInt. J. Food Microbiol.792734CrossRefPubMedGoogle Scholar
  23. Russel, N.J., Fukunaga, N. 1990A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteriaFed. Eur. Microbiol. Rev.75171182Google Scholar
  24. Takeuchi, K., Smith, M.A., Doyle, M.P. 2003Pathogenicity of food and clinical Listeria monocytogenes isolates in a mouse bioassayJ. Food Prot.6623622366PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Margarida Ribeiro Neunlist
    • 1
  • Michel Federighi
    • 1
  • Michel Laroche
    • 1
  • Danièle Sohier
    • 2
  • Gilles Delattre
    • 3
  • Christine Jacquet
    • 4
  • Nour-Eddine Chihib
    • 5
  1. 1.Ecole Nationale Vétérinaire de Nantes – Route de GachetUMR-INRA SECALIM 1014Nantes Cedex 03France
  2. 2.Association pour le développement de la Recherche en Industries Agro-alimentaires (ADRIA)Unité Sécurité et Conservation des AlimentsQuimper CedexFrance
  3. 3.LGPTA/INRAVilleneuve d’AscqFrance
  4. 4.Laboratoire des ListeriaCentre National de référence des Listeria, Institut PasteurParis, cedex 15France
  5. 5.Laboratoire de MicrobiologieUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations