Advertisement

Antonie van Leeuwenhoek

, Volume 87, Issue 1, pp 29–36 | Cite as

Novel actinobacteria from marine sponges

  • Naomi  F. Montalvo
  • Naglaa  M. Mohamed
  • Julie  J. Enticknap
  • Russell  T. Hill
Article

Abstract

Actinobacteria exclusively within the sub-class Acidimicrobidae were shown by 16S rDNA community analysis to be major components of the bacterial community associated with two sponge species in the genus Xestospongia. Four groups of Actinobacteria were identified in Xestospongia spp., with three of these four groups being found in both Xestospongia muta from Key Largo, Florida and Xestospongia testudinaria from Manado, Indonesia. This suggests that these groups are true symbionts in these sponges and may play a common role in both the Pacific and Atlantic sponge species. The fourth group was found only in X. testudinaria and was a novel assemblage distantly related to any previously sequenced actinobacterial clones. The only actinobacteria that were obtained in initial culturing attempts were Gordonia, Micrococcus and Brachybacterium spp., none of which were represented in the clone libraries. The closest cultured actinobacteria to all the Acidimicrobidae clones from Xestospongia spp. are ‘Microthrix parvicella’ and Acidimicrobium spp. Xestospongia spp. can now be targeted as source material from which to culture novel Acidimicrobidae to investigate their potential as producers of bioactive compounds. Isolation of sponge-associated Acidimicrobidae will also make it possible to elucidate their role as sponge symbionts.

Keywords

16S rDNA Acidimicrobium Actinobacteria Marine Sponge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990Basic local alignment search toolJ. Mol. Biol.215403410PubMedGoogle Scholar
  2. Berdy, J. 1989The discovery of new bioactive microbial metabolites: screening and identificationBushell, M.E.Graefe, U. eds. Bioactive Microbial Metabolites (Progress in Industrial Microbiology, Vol. 27)ElsevierAmsterdam325Google Scholar
  3. Blackall, L.L., Stratton, H., Bradford, D., Dot, T.D., Sjorup, C., Seviour, E.M., Seviour, R.J. 1996Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plantsInt. J. Syst. Bacteriol.46344346CrossRefPubMedGoogle Scholar
  4. Cragg, G.M., Newman, D.J., Snader, K.M. 1997Natural products in drug discovery and developmentJ. Nat. Prod.605260PubMedGoogle Scholar
  5. J.J. Enticknap R. Thompson O. Peraud J.E. Lohr M.T. Hamann R.T. Hill 2005 Molecular analysis of a Florida Keys sponge: Implications for natural products discovery Marine Biotechnol. In press.)Google Scholar
  6. Felsenstein J. 2004. PHYLIP (Phylogenetic Inference Package). Version 3.6. Department of Genetics University of Washington, Seattle WA.Google Scholar
  7. Fitch, W.M., Margoliash, E. 1967Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicabilityScience155279284PubMedGoogle Scholar
  8. Giovannoni, S.J., Rappe, M.S. 2000Evolution, diversity, and molecular ecology of marine prokaryotesKirchman, D.L. eds. Microbial Ecology of the OceansWiley-LissNew YorkGoogle Scholar
  9. Hentschel, U., Hopke, J., Horn, M., Friedrich, A.B., Wagner, M., Hacker, J., Moore, B.S. 2002Molecular evidence for a uniform microbial community in sponges from different oceansAppl. Environ. Microbiol.6844314440PubMedGoogle Scholar
  10. Hill, R.T. 2004Microbes from marine sponges: a treasure trove of biodiversity for natural products discoveryBull, A.T. eds. Microbial Diversity and BioprospectingASM PressWashington, DC177190Google Scholar
  11. Holmes, A.J., Tujula, N.A., Holley, M., Contos, A., James, J.M., Rogers, P., Gillings, M.R. 2001Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, AustraliaEnviron. Microbiol.3256264PubMedGoogle Scholar
  12. Jensen, P.R., Dwight, R., Fenical, W. 1991Distribution of actinomycetes in near-shore tropical marine sedimentsAppl. Environ. Microbiol.5711021108PubMedGoogle Scholar
  13. Johnson, D.B., Okibe, N., Roberto, F.F. 2003Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristicsArch. Microbiol.1806068PubMedGoogle Scholar
  14. Joseph, S.J., Hugenholtz, P., Sangwan, P., Osborne, C.A., Janssen, P.H. 2003Laboratory cultivation of widespread and previously uncultured soil bacteriaAppl. Environ. Microbiol.6972107215PubMedGoogle Scholar
  15. Kawase, T., Saito, A., Sato, T., Kanai, R., Fujii, T., Nikaidou, N., Miyashita, K., Watanabe, T. 2004Distribution and phylogenetic analysis of family 19 chitinases in ActinobacteriaAppl. Environ. Microbiol.7011351144PubMedGoogle Scholar
  16. Kerr, R.G., Kelly-Borges, M. 1994Biochemical and morphological heterogeneity in the Caribbean sponge Xestospongia muta (Petrosida: Petrosiidae)van Soest, R.W.M.van Kempen, T.M.G.Braekman, J.C. eds. Sponges in Time and SpaceBalkemaRotterdam6573Google Scholar
  17. Kluge, A.G., Farris, F.S. 1969Quantitative phyletics and the evolution of annuransSyst. Zool.18132Google Scholar
  18. Lopez, J.V., McCarthy, P.J., Janda, K.E., Willoughby, R., Pomponi, S.A. 1999Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with Discodermia spp. (Porifera: Demospongia)Mem. Qld. Mus.44329341Google Scholar
  19. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, , Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.-H. 2004ARB: a software environment for sequence dataNucleic Acids Res.3213631371PubMedGoogle Scholar
  20. Maidak, B.L., Cole, J.R., Parker, Jr. C.T., Garrity, G.M., Larsen, N., Li, B., Lilburn, T.G., McCaughey, M.J., Olsen, G.J., Overbeek, R., Pramanik, S., Schmidt, T.M., Tiedje, J.M., Woese, C.R. 1999A new version of the RDP (Ribosomal Database Project)Nucleic Acids Res.27171173PubMedGoogle Scholar
  21. Mincer, T.J., Jensen, P.R., Kauffman, C.A., Fenical, W. 2002Widespread and persistent populations of a major new marine actinomycete taxon in ocean sedimentsAppl. Environ. Microbiol.6850055011PubMedGoogle Scholar
  22. Moran, M.A., Rutherford, L.T., Hodson, R.E. 1995Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probeAppl. Environ. Microbiol.6136953700PubMedGoogle Scholar
  23. Okami, Y., Hotta, K. 1988Search and discovery of new antibioticsGoodfellow, M.Williams, S.T.Mordarski, M. eds. Actinomycetes in BiotechnologyAcademic Press Inc.San Diego3367Google Scholar
  24. Pitcher, D.G., Saunders, N.A., Owen, R.J. 1989Rapid extraction of bacterial genomic DNA with guanidium thiocyanateLett. Appl. Microbiol.8151156Google Scholar
  25. Rappe, M.S., Gordon, D.A., Vergin, K.L., Giovannoni, S.J. 1999Phylogeny of Actinobacteria small subunit (SSU) rRNA gene clones recovered from marine bacterioplanktonSyst. Appl. Microbiol.22106112Google Scholar
  26. Reysenbach, A.-L., Giver, L.J., Wickham, G.S., Pace, N.R. 1992Differential amplification of rRNA genes by polymerase chain reactionAppl. Environ. Microbiol.5834173418PubMedGoogle Scholar
  27. Saitou, N., Nei, M. 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMol. Biol. Evol.4406425PubMedGoogle Scholar
  28. Takizawa, M., Colwell, R.R., Hill, R.T. 1993Isolation and diversity of actinomycetes in the Chesapeake BayAppl. Environ. Microbiol.599971002PubMedGoogle Scholar
  29. Webster, N.S., Wilson, K.J., Blackall, L.L., Hill, R.T. 2001Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile Appl. Environ. Microbiol.67434444PubMedGoogle Scholar
  30. Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. 199116S ribosomal DNA amplification for phylogenetic studyJ. Bacteriol.173697703PubMedGoogle Scholar
  31. Wilkinson, C.R. 1978Microbial associations in sponges. III. Ultrastructure of the in situ associations of coral reef spongesMarine Biol.49177185Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Naomi  F. Montalvo
    • 1
  • Naglaa  M. Mohamed
    • 1
  • Julie  J. Enticknap
    • 1
  • Russell  T. Hill
    • 1
  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations