Skip to main content
Log in

Fare inspection patrolling under in-station selective inspection policy

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A patrolling strategy that defines fare inspection frequencies on a proof-of-payment transportation system is operationally useful to the transit authority when there is a mechanism for its practical implementation. This study addresses the operational implementation of a fare inspection patrolling strategy under an in-station selective inspection policy using an unpredictable patrolling schedule, where the transit authority select a patrolling schedule each day with some probability. The challenge is to determine the set of patrolling schedules and their respective probabilities of being selected whose systematic day-to-day application matches the inspection frequencies that inhibit the action of opportunistic passengers in the medium term. A Stackelberg game approach is used to represent the hierarchical decision making process between the transit authority and opportunistic passengers. The heterogeneity of opportunistic passengers’ decisions to evade fare payment is taken into account. Numerical experiments show that a joint strategy-schedule approach provides good-quality unpredictable patrolling schedules with respect to the optimality gap for large-scale networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auer, P., Cesa-Bianchi, N., Freund, Y., et al. (2002). The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1), 48–77.

    Article  MathSciNet  Google Scholar 

  • Barabino, B., & Salis, S. (2019). Moving towards a more accurate level of inspection against fare evasion in proof-of-payment transit systems. Networks and Spatial Economics, 19(4), 1319–1346.

    Article  Google Scholar 

  • Barabino, B., & Salis, S. (2022). Segmenting fare-evaders by tandem clustering and logistic regression models. Public Transport, 15, 61–96.

    Article  Google Scholar 

  • Barabino, B., Salis, S., & Useli, B. (2014). Fare evasion in proof-of-payment transit systems: Deriving the optimum inspection level. Transportation Research Part B: Methodological, 70, 1–17.

    Article  Google Scholar 

  • Barabino, B., Lai, C., & Olivo, A. (2020). Fare evasion in public transport systems: A review of the literature. Public Transport, 12(1), 27–88.

    Article  Google Scholar 

  • Barabino, B., Di Francesco, M., & Ventura, R. (2023). Evaluating fare evasion risk in bus transit networks. Transportation Research Interdisciplinary Perspectives, 20(100), 854.

    Google Scholar 

  • Brotcorne, L., Escalona, P., Fortz, B., et al. (2021). Fare inspection patrols scheduling in transit systems using a Stackelberg game approach. Transportation Research Part B: Methodological, 154, 1–20.

    Article  Google Scholar 

  • Buneder, C., & Galilea, P. (2017). Temporal and spatial analysis of fare evasion in transantiago. Tech. rep.

  • Busco, C., González, F., Jaqueih, Y., et al. (2022). Understanding transantiago users’ motivations for paying or evading payment of bus fares. Journal of Public Transportation, 24(100), 016.

    Google Scholar 

  • Cantillo, A., Raveau, S., & Muñoz, J. C. (2022). Fare evasion on public transport: Who, when, where and how? Transportation Research Part A: Policy and Practice, 156, 285–295.

    Google Scholar 

  • Currie, G., & Delbosc, A. (2017). An empirical model for the psychology of deliberate and unintentional fare evasion. Transport Policy, 54, 21–29.

    Article  Google Scholar 

  • Dauby, L., & Kovacs, Z. (2007). Fare evasion in light rail systems. Transportation Research Circular (E-C112)

  • Delfau, J. B., Pertsekos, D., & Chouiten, M. (2018). Optimization of control agents shifts in public transportation: Tackling fare evasion with machine-learning. In 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, pp. 409–413

  • Egu, O., & Bonnel, P. (2020). Can we estimate accurately fare evasion without a survey? Results from a data comparison approach in lyon using fare collection data, fare inspection data and counting data. Public Transport, 12(1), 1–26.

    Article  Google Scholar 

  • Freeman, R. B. (1999). The economics of crime. Handbook of Labor Economics, 3, 3529–3571.

    Article  Google Scholar 

  • Guzman, L. A., Arellana, J., & Camargo, J. P. (2021). A hybrid discrete choice model to understand the effect of public policy on fare evasion discouragement in bogotá’s bus rapid transit. Transportation Research Part A: Policy and Practice, 151, 140–153.

    Google Scholar 

  • Jiang, A. X., Yin, Z., & Johnson, M. P., et al. (2012). Towards optimal patrol strategies for fare inspection in transit systems. In 2012 AAAI Spring Symposium Series

  • Jiang, A. X., Yin, Z., & Zhang, C., et al. (2013). Game-theoretic randomization for security patrolling with dynamic execution uncertainty. In AAMAS, pp. 207–214

  • Krogvig, L. B. (2014). Fare inspection optimization in train networks. Master’s thesis, Institutt for matematiske fag

  • Lee, J. (2011). Uncovering San Francisco, California, muni’s proof-of-payment patterns to help reduce fare evasion. Transportation Research Record, 2216(1), 75–84.

    Article  ADS  MathSciNet  Google Scholar 

  • Milioti, C., Panoutsopoulos, A., Kepaptsoglou, K., et al. (2020). Key drivers of fare evasion in a metro system: Evidence from Athens, Greece. Case Studies on Transport Policy, 8(3), 778–783.

    Article  Google Scholar 

  • Sasaki, Y. (2014). Optimal choices of fare collection systems for public transportations: Barrier versus barrier-free. Transportation Research Part B: Methodological, 60, 107–114.

    Article  Google Scholar 

  • Torres-Montoya, M. (2014). Tackling fare evasion in Transantiago: An integrated approach. Tech. rep.

  • Troncoso, R., & de Grange, L. (2017). Fare evasion in public transport: A time series approach. Transportation Research Part A: Policy and Practice, 100, 311–318.

    Google Scholar 

  • Winter, H. (2019). The economics of crime: An introduction to rational crime analysis. Routledge.

    Book  Google Scholar 

  • Wolfgram, L., Pollan, C., & Hostetter, K., et al. (2022). Measuring and managing fare evasion. Tech. rep.

  • Yin, Z., Jiang, A. X., Tambe, M., et al. (2012). Trusts: Scheduling randomized patrols for fare inspection in transit systems using game theory. AI Magazine, 33(4), 59–59.

    Article  Google Scholar 

Download references

Acknowledgements

Pablo Escalona is grateful for the support of the National Agency for Research and Development (ANID) Chile through grant FONDECYT 11200287.

Funding

The funding was provided by Agencia Nacional de InvestigacÍn y Desarrollo (Fondecyt 11200287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Escalona.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalona, P., Brotcorne, L., Fortz, B. et al. Fare inspection patrolling under in-station selective inspection policy. Ann Oper Res 332, 191–212 (2024). https://doi.org/10.1007/s10479-023-05670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05670-2

Keywords

Navigation