Skip to main content
Log in

Extending the Merton model with applications to credit value adjustment

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Following the global financial crisis, the measurement of counterparty credit risk has become an essential part of the Basel III accord with credit value adjustment being one of the most prominent components of this concept. In this study, we extend the Merton structural credit risk model for counterparty credit risk calculation in the context of calculating the credit value adjustment mainly by estimating the probability of default. We improve the Merton model in a variance-convoluted-gamma environment to include default dependence between counterparties through a linear factor decomposition framework. This allows one to tackle dependence through a systematic common component. Our set-up allows for easier, faster and more accurate fitting for the credit spread. Results confirm that use of the variance-gamma-convolution clearly solves the vanishing credit spread problem for short time-to-maturity or low leverage cases compared to a Brownian motion environment and its modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. In Eq. (13), the notations \(E(A(t{-}),t)\), E(A(t), t), and \(E(A(t{-})e^{X_{A}(t)},t)\) denote that the equity value at time t depends on \(A(t-)\), A(t), and \(A(t{-})e^{X_{A}(t)}\), respectively. \(A(t-)\) and \(A(t{-})e^{X_{A}(t)}\) refer to the asset value before and after the jump, respectively.

  2. We call the construction in Eq. (17) a linear VGC factor framework because the final variable X(t) is no longer a VG random variable. This results from the fact that the time change is a convolution of two gamma variables with completely different parameters which in turn is not a gamma variable anymore.

  3. Setting \(c_{2}\beta _{2}=c_{1}\beta _{1}\) one can easily recover a gamma random variable characteristic function, which is a special case for the sum of two gamma random variables, confirms that this formula is most general for a gamma convolution.

  4. The sole purpose of the gamma approximation is to write Eq. (32) in terms of this special function. It is useful and will later be used in the derivation of another semi-closed form formula.

  5. Ericsson and Reneby (2005) note that the method of Ronn and Verma (1986) might be biased. Therefore, we also use the iterative estimation procedure of Vassalou and Xing (2004).

  6. We use these two companies (DB and ENI) and the specific sample period to compare our results with those of Ballotta and Fusai (2015).

  7. However, this is not completely consistent with finding factor structure coefficients using the correlation matrix since the correlation matrix is a real-world probability measure parameterization.

  8. These companies are used to represent a dependence structure where the price of the financial instrument’s underlying has a direct effect on the revenues of ENI. DB is a systemically important counterparty in the setting.

  9. Here we assume a constant recovery rate since the market CDS pricing data are given.

  10. As indicated and used by Luciano and Schoutens (2006), Nelder-Mead is a derivative-free optimization method that is generally a successful tool for fitting to market variables, whereas Levenberg-Marquardt is a widely used optimization algorithm for curve fitting.

  11. The Brent oil futures call option data represent the derivative instrument in the setting which has a dependence to the counterparty ENI and used for the valuation adjustment calculations. Moreover, Brent oil futures are chosen to obtain robust parameters since these are liquid instruments and relevant to our dependence setting.

  12. The empirical correlation matrix is estimated using historical returns of DB, ENI, and Brent Crude Oil over the period between June 26, 2013 and June 26, 2014.

  13. The calibration at this stage and in the rest of the paper is done via the iterative procedure of Vassalou and Xing (2004) as this iterative method is less biased and is stable.

  14. This result is the simple application of \(\arctan (x)+\arctan (y)=\arctan {\frac{x+y}{1-xy}}\)

  15. For instance, dividend payments are ignored for the sake of simplicity.

  16. Setting \(c_{1}\sigma _{1}=c_{2}\sigma _{2}\), one can easily recover the original VG process characteristic function and, therefore, the martingale correction factor.

References

  • Antonelli, F., Ramponi, A., & Scarlatti, S. (2021). CVA and vulnerable options pricing by correlation expansions. Annals of Operations Research, 299, 401–427.

    Article  Google Scholar 

  • Ballotta, L., & Bonfiglioli, E. (2016). Multivariate asset models using Lévy processes and applications. European Journal of Finance, 22, 1320–1350.

    Article  Google Scholar 

  • Ballotta, L., Deelstra, G., & Rayee, G. (2017). Multivariate FX models with jumps: Triangles, Quantos and implied correlation. European Journal of Operational Research, 260, 1181–1199.

    Article  Google Scholar 

  • Ballotta, L., & Fusai, G. (2015). Counterparty credit risk in a multivariate structural model with jumps. Finance, 36, 39–74.

    Article  Google Scholar 

  • Ballotta, L., Fusai, G., Loregian, A., & Fabricio Perez, M. (2019). Estimation of multivariate asset models with jumps. Journal of Financial and Quantitative Analysis, 54, 2053–2083.

    Article  Google Scholar 

  • Ballotta, L., Fusai, G., & Marena, M. (2016). A gentle introduction to default risk and counterparty credit modelling. SSRN Working Paper. https://doi.org/10.2139/ssrn.2816355

  • BIS, (2016). OTC derivatives statistics at end-June 2016. Bank for International Settlements - Statistical Release. https://www.bis.org/publ/otc_hy1611.pdf

  • Bonollo, M., De Persio, L., Oliva, I., & Semmoloni, A. (2015). A quantization approach to the counterparty credit exposure estimation. SSRN Working Paper. https://doi.org/10.2139/ssrn.2574384

  • Bonollo, M., Di Persio, L., Mammi, L., & Oliva, I. (2016). Estimating the counterparty risk exposure by using the Brownian motion local time. International Journal of Applied Mathematics and Computer Science, 27, 435–447.

    Article  Google Scholar 

  • Brigo, D., Morini, M., & Pallavicini, A. (2013). Counterparty credit risk, collateral and funding: With pricing cases for all asset classes. Hoboken: Wiley.

    Book  Google Scholar 

  • Brigo, D., & Vrins, F. (2018). Disentangling wrong-way risk: Pricing credit valuation adjustment via change of measures. European Journal of Operational Research, 269, 1154–1164.

    Article  Google Scholar 

  • Chaudhry, M. A., & Syed, M. Z. (2002). On a class of incomplete gamma functions with applications. London: Chapman and Hall /CRC.

    Google Scholar 

  • Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Di Salvo, F. (2008). A characterization of the distribution of a weighted sum of gamma variables through multiple hypergeometric functions. Integral Transforms and Special Functions, 19(8), 563–575.

    Article  Google Scholar 

  • Ericsson, J., & Reneby, J. (2005). Estimating structural bond pricing models. Journal of Business, 78, 707–735.

    Article  Google Scholar 

  • Fabozzi, F. J., Leccadito, A., & Tunaru, R. S. (2014). Extracting market information from equity options with exponential Lévy process. Journal of Economic Dynamics and Control, 38, 125–141.

    Article  Google Scholar 

  • Fiorani, F., Luciano, E., & Semeraro, P. (2010). Single and joint default in a structural model with purely discontinuous asset prices. Quantitative Finance, 10, 249–263.

    Article  Google Scholar 

  • Geman, H., & Ane, T. (1996). Stochastic subordination. Risk, 9, 145–150.

    Google Scholar 

  • Gemmil, G., & Marra, M. (2019). Explaining CDS prices with Merton’s model before and after the Lehman default. Journal of Banking & Finance, 106, 93–109.

    Article  Google Scholar 

  • Gnoatto, A., Picarelli, A., & Reisinger, C. (2020). Deep xva solver – a neural network based counterparty credit risk management framework. arXiv: 2005.02633

  • Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Amsterdam: Elsevier/Academic Press.

    Google Scholar 

  • Gray, D., & Malone, S. (2008). Macro financial risk analysis. Hoboken: Wiley.

    Book  Google Scholar 

  • Hirsa, A. (2012). Computational methods in finance (1st ed.). Boca Raton: Chapman and Hall.

    Google Scholar 

  • Hong, H. P. (1999). An approximation to bivariate and trivariate normal integrals. Civil Engineering and Environmental Systems, 16(2), 115–127.

    Article  Google Scholar 

  • Hull, J., & White, A. (2012). CVA and wrong-way risk. Financial Analysts Journal, 68, 58–69.

    Article  Google Scholar 

  • Humbert, P. (1922). The confluent hypergeometric functions of two variables. Proceedings of the Royal Society of Edinburgh, 41, 73–96.

    Article  Google Scholar 

  • Luciano, E., & Schoutens, W. (2006). A multivariate jump-driven financial asset model. Quantitative Finance, 6, 385–402.

    Article  Google Scholar 

  • Madan, D. B. (1998). The variance gamma process and option pricing. Review of Finance, 2, 79–105.

    Article  Google Scholar 

  • Madan, D. B., & Milne, F. (1991). Option pricing with V.G. martingale components. Mathematical Finance, 1, 39–55.

    Article  Google Scholar 

  • Madan, D. B., & Seneta, E. (1990). The variance gamma (V.G.) model for share market returns. Journal of Business, 63, 511–524.

    Article  Google Scholar 

  • Mathai, A., & Moschopoulos, P. (1991). On a multivariate gamma. Journal of Multivariate Analysis, 39(1), 135–153.

    Article  Google Scholar 

  • Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29, 449–470.

    Google Scholar 

  • Moosbrucker, T. (2006). Explaining the correlation smile using variance gamma distributions. Journal of Fixed Income, 16, 71–87.

    Article  Google Scholar 

  • Ronn, E. I., & Verma, A. K. (1986). Pricing risk-adjusted deposit insurance: An option-based model. Journal of Finance, 41, 871–895.

    Article  Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2, 110–114.

    Article  Google Scholar 

  • Vassalou, M., & Xing, Y. (2004). Default risk in equity returns. Journal of Finance, 59, 831–868.

    Article  Google Scholar 

  • Vazquez-Leal, H., Castañeda-Sheissa, R., Sarmiento-Reyes, A., & Sanchez-Orea, J. (2011). High accurate simple approximation of normal distribution integral. Mathematical Problems in Engineering, 2012, 124029.

    Google Scholar 

  • Yang, H., & Kanniainen, J. (2017). Jump and volatility dynamics for the S &P500: Evidence for infinite-activity jumps with non-affine volatility dynamics from stock and option markets. Review of Finance, 21, 811–844.

    Article  Google Scholar 

  • Yang, Y., Fabozzi, F. J., & Bianchi, M. L. (2015). Bilateral counterparty risk valuation adjustment with wrong-way risk on collateralized commodity counterparty. Journal of Financial Engineering, 2, 1550001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Sensoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ahmet Sensoy gratefully acknowledges support from Turkish Academy of Sciences under its Outstanding Young Scientist Award Programme (TUBA-GEBIP). Frank J. Fabozzi acknowledges the financial support from EDHEC Business School.

Appendix

Appendix

1.1 A.0: The Merton model

Merton (1974) assesses a company’s ability to meet its obligations by evaluating the credit risk of that company’s debt. The model assumes that the total value of the assets, A(t), follows a geometric Brownian motion:

$$\begin{aligned} dA(t)=r A(t)dt+\sigma _{A} A(t) dW(t), \end{aligned}$$
(A.1)

where r is the expected rate of return, \(\sigma \) is the volatility of the assets, and W(t) is the Brownian motion at time t. The model further assumes that the financial market is frictionless so that the liquidation value is equal to firm value.Footnote 15 Denoting the company’s total value of debt with maturity T by D and the total value of equity by E(t) where \(t\le T\), from the fundamental accounting identity we have

$$\begin{aligned} E(T)=\text {max}(A(T)-D,0), \end{aligned}$$
(A.2)

which shows that the equity is an implicit call option on the company’s total value of assets with strike price D and maturity T (Gray & Malone, 2008). Therefore, one can use the B-S call option formula to calculate the market value of equity,

$$\begin{aligned} E(t)=A(t){\mathcal {N}}(d_1)-De^{-r(T-t)}{\mathcal {N}}(d_2), \end{aligned}$$
(A.3)

where

$$\begin{aligned} d_1= & {} \frac{\ln (A(t)/D)+(r+\frac{\sigma _{A}^2}{2})(T-t)}{\sigma \sqrt{T-t}}, \end{aligned}$$
(A.4)
$$\begin{aligned} d_2= & {} d_1-\sigma _{A} \sqrt{T-t}, \end{aligned}$$
(A.5)

and \({\mathcal {N}}(x)\) is the cumulative standard normal distribution function. Under this setup, the default probability at maturity T under the risk-neutral probability measure is

$$\begin{aligned} P(A(T)<D | A(t))={\mathcal {N}}(-d_2). \end{aligned}$$
(A.6)

1.2 A.1: Derivation of the VG model delta

Proof

First, the option value is written as usual:

$$\begin{aligned} {\mathbb {E}}^{}(e^{-r\tau }(S(T)-K)^{+})={\mathbb {E}}^{}(e^{-r\tau }(S(T)-K){\mathbb {I}}_{\left\{ S(T)>K\right\} }). \end{aligned}$$
(A.7)

Then the derivative of this expectation with respect to the stock price is:

$$\begin{aligned} \frac{\partial {\mathbb {E}}^{}((S(T)-K){\mathbb {I}}_{\left\{ S(T)>K\right\} })}{\partial S(t)}&={\mathbb {E}}^{S}({\mathbb {I}}_{\left\{ S(T)>K\right\} }|{\mathcal {F}}(t))+{\mathbb {E}}^{}(\delta ((S(T)-K)e^{-r\tau })S_{T}e^{-r\tau }|{\mathcal {F}}(t)) \nonumber \\&\quad -{\mathbb {E}}^{}(Ke^{-r\tau }\delta ((S(T)-K)e^{-r\tau })| {\mathcal {F}}(t)), \end{aligned}$$
(A.8)

where \(\delta \) is the Dirac function which is the derivative of Heaviside function \({\mathbb {I}}_{\left\{ S_{T}>K\right\} }\). Since Dirac terms are equal to 1 when \(S(T)=K\), this leads to the following result:

$$\begin{aligned} \frac{\partial {\mathbb {E}}^{}((S(T)-K){\mathbb {I}}_{\left\{ S(T)>K\right\} })}{\partial S}=\frac{\partial C}{\partial S}={\mathbb {E}}^{S}({\mathbb {I}}_{\left\{ S(T)>K\right\} }|{\mathcal {F}}(t))={\mathbb {Q}}^{S}(S(T)>K)=F^{S}(x) \end{aligned}$$
(A.9)

where \(F^S(x)\) is the cumulative distribution function under \({\mathbb {Q}}^{S}\). \(\square \)

1.3 A.2: Sum of weighted independent gamma random variables with different scale and shape parameters

Proof

We start by writing,

$$\begin{aligned} \zeta _{1}= & {} c_{1}\gamma _{1}=\Lambda _{1},\\ \zeta _{2}= & {} c_{1}\gamma _{1}+c_{2}\gamma _{1}=\Lambda _{1}+\Lambda _{2}, \end{aligned}$$

where \(\Lambda _{1}\sim Ga(\alpha _{1},c_{1}\sigma _{1})\) and \(\Lambda _{2}\sim Ga(\alpha _{2},c_{2}\sigma _{2})\). Then using \(\Lambda _{2}=\zeta _{2}-\Lambda _{1} =\zeta _{2}-\zeta _{1} \), we calculate the Jacobian matrix and the determinant,

$$\begin{aligned} \mathbf {\zeta }_{i,j}= & {} \begin{bmatrix} \frac{\partial \Lambda _1}{\partial \zeta _1} &{} \frac{\partial \Lambda _1}{\partial \zeta _2} \\[1ex] \frac{\partial \Lambda _2}{\partial \zeta _1} &{} \frac{\partial \Lambda _2}{\partial \zeta _2} \\[1ex] \end{bmatrix}=\begin{bmatrix} 1&{}0\\[1ex] -1&{}1 \end{bmatrix}, \\ |J|= & {} \begin{vmatrix} 1&0\\ -1&1 \end{vmatrix}=1. \end{aligned}$$

Then we can start by writing the density of \(\zeta _{2}\) in line with the convolution of two random variables,

$$\begin{aligned} f(\zeta _{2},\alpha _{1},\alpha _{2},\sigma _{1},\sigma _{2},c_{1},c_{2})=\int _{0}^{\zeta _{2}}\frac{\Lambda _{1}^{\alpha _{1}-1}e^{\frac{-\Lambda _{1}}{c_{1}\sigma _{1}}+\frac{\Lambda _{1}}{c_{2}\sigma _{2 }}}\left( \zeta _{2}-\Lambda _{1}\right) ^{\alpha _{2}-1}e^{\frac{-\zeta _{2}}{c_{2}\sigma _{2}}}}{\Gamma (\alpha _{1})\Gamma (\alpha _{2})}d\Lambda _{1}, \end{aligned}$$

after some tedious algebra and modifying the boundary of the integral we obtain,

$$\begin{aligned}{} & {} f(\zeta _{2},\alpha _{1},\alpha _{2},\sigma _{1},\sigma _{2},c_{1},c_{2})\nonumber \\{} & {} \quad =\zeta _{2}^{\alpha _{2}+\alpha _{1}-1}e^{\frac{-\zeta _{2}}{c_{2}\sigma _{2}}}\underbrace{\int _{0}^{1}\frac{\Lambda _{1}^{\alpha _{1}-1}\left( 1-\Lambda _{1}\right) ^{\alpha _{2}-1}e^{-\zeta _{2}\Lambda _{1}\left( \frac{1}{c_{1}\sigma _{1}}-\frac{1}{c_{2}\sigma _{2 }}\right) }}{\Gamma (\alpha _{1})\Gamma (\alpha _{2})}d\Lambda _{1}}_{\frac{_{1}F\left( \alpha _{1},\alpha _{2}+\alpha _{1},\zeta _{2}(\frac{1}{c_{1}\sigma _{1}}-\frac{1}{c_{2}\sigma _{2}})\right) }{\Gamma \left( \alpha _{1}+\alpha _{2}\right) }}. \end{aligned}$$
(A.10)

We see that the integral in () can be written in terms of the confluent hypergeometric function of the second kind using Gradshteyn and Ryzhik (2007) (page 870, Equation\(-\)7.621-5).

Therefore final representation will be,

$$\begin{aligned}{} & {} f(\zeta _{2},\nu _{1},\nu _{2},\sigma _{1},\sigma _{2},c_{1},c_{2})=\zeta _{2}^{\alpha _{2} +\alpha _{1}-1}e^{\frac{-\zeta _{2}}{c_{2}\sigma _{2}}}(c_{1}\sigma _{1})^{-\alpha _{1}} (c_{2}\sigma _{2})^{-\alpha _{2}}\nonumber \\{} & {} \frac{_{1}F_{1}\left( \alpha _{1},\alpha _{2}+\alpha _{1}, \zeta _{2}(\frac{1}{c_{1}\sigma _{1}}-\frac{1}{c_{2}\sigma _{2}})\right) }{\Gamma \left( \alpha _{1}+\alpha _{2}\right) } \end{aligned}$$
(A.11)

The characteristic function will be straightforward to derive. First we write characteristic function,

$$\begin{aligned} \Phi _{\zeta _{2}}(u,\alpha _{1},\alpha _{2},\sigma _{1},\sigma _{2},c_{1},c_{2})= & {} \int _{0}^{\infty }e^{iu\zeta _{2}}\zeta _{2}^{\alpha _{2}+\alpha _{1}-1}e^{\frac{-\zeta _{2}}{c_{2}\sigma _{2}}}(c_{1}\sigma _{1})^{-\alpha _{1}}(c_{2}\sigma _{2})^{-\alpha _{2}}\nonumber \\{} & {} \times \frac{_{1}F_{1}\left( \alpha _{1},\alpha _{2}+\alpha _{1},\zeta _{2}(\frac{1}{c_{1}\sigma _{1}}-\frac{1}{c_{2}\sigma _{2}})\right) }{\Gamma \left( \alpha _{1}+\alpha _{2}\right) }d\zeta _{2}\nonumber \\= & {} \int _{0}^{\infty }e^{-\left( \frac{1}{c_{2}\sigma _{2}}-iu\right) \zeta _{2}}\zeta _{2}^{\alpha _{2}+\alpha _{1}-1}(c_{1}\sigma _{1})^{-\alpha _{1}}(c_{2}\sigma _{2})^{-\alpha _{2}} \nonumber \\{} & {} \times \frac{_{1}F_{1}\left( \alpha _{1},\alpha _{2}+\alpha _{1},\zeta _{2}(\frac{1}{c_{1}\sigma _{1}}-\frac{1}{c_{2}\sigma _{2}})\right) }{\Gamma \left( \alpha _{1}+\alpha _{2}\right) }d\zeta _{2} \end{aligned}$$
(A.12)

Then using Gradshteyn and Ryzhik (2007) (page 822, Equation 4) we can write,

$$\begin{aligned}{} & {} \Phi _{\zeta _{2}}(u,\alpha _{1},\alpha _{2},\sigma _{1},\sigma _{2},c_{1},c_{2})=D\left( 2c_{1}\sigma _{1}-c_{2}\sigma _{2} -iuC\right) ^{-\alpha _{1}-\alpha _{2}}\nonumber \\{} & {} \times F\left( \alpha _{2}, \alpha _{1}+\alpha _{2}, \alpha _{1}+\alpha _{2},\frac{k}{k-\left( \frac{1}{c_{2}\sigma _{2}}-iu \right) }\right) \end{aligned}$$
(A.13)

where \(D=(c_{1}\sigma _{1})^{\alpha _{2}}(c_{2}\sigma _{2})^{\alpha _{1}}, k=\frac{1}{c_{1}\sigma _{1}}-\frac{1}{c_{2}\sigma _{2}}\) and \(C=c_{1}\sigma _{1}c_{2}\sigma _{2}\). \(\square \)

1.4 A.3: VGC characteristic function and martingale correction factor

Proof

The characteristic function of the VGCFootnote 16 random variable can be written as,

$$\begin{aligned} {\mathbb {E}}\left( e^{iuX(t)}\right)= & {} {\mathbb {E}}\left( {\mathbb {E}}\left( e^{iu\theta g+iu \sigma W(g)}|\gamma =g \right) \right) \\= & {} {\mathbb {E}}\left( e^{i\left( u\theta -\frac{u^{2}\sigma ^{2}}{2}\right) g}\right) \\= & {} D\left( 2c_{1}\sigma _{1}-c_{2}\sigma _{2} -iuC\theta +C\frac{u^{2}\sigma ^{2}}{2}\right) ^{-\alpha _{1}-\alpha _{2}}\\\times & {} F\left( \alpha _{2}, \alpha _{1}+\alpha _{2}, \alpha _{1}+\alpha _{2},\frac{k}{k-\left( \frac{1}{c_{2}\sigma _{2}}-iu\theta +\frac{u^{2}\sigma ^{2}}{2} \right) }\right) \end{aligned}$$

Then \(\phi _{X}(-i)\), the natural logarithm of VGC characteristic function evaluated at \(-i\), and also the martingale correction factor could be written as follows,

$$\begin{aligned} \phi _{X}(-i)= & {} \log (D)+\left( -\alpha _{1}-\alpha _{2}\right) \log \left( 2c_{1}\sigma _{1}-c_{2}\sigma _{2}+A\right) \nonumber \\{} & {} +\log \left( F\left( \alpha _{2}, \alpha _{1}+\alpha _{2}, \alpha _{1}+\alpha _{2},\frac{k}{k-\left( \frac{1}{c_{2}\sigma _{2}}+A \right) }\right) \right) \end{aligned}$$
(A.14)

where \(A=C\theta -\frac{C\sigma ^{2}}{2}\) and \(\kappa =\left( 2c_{1}\sigma _{1}-c_{2}\sigma _{2}-C\theta -\frac{C\sigma ^{2}}{2}\right) \) which is used in Eq. (39). \(\square \)

1.5 A.4: Multivariate gamma density

Proof

Let \(Z_{1}\left( \nu _{1},\beta _{1}\right) =X_{1}+c_{1}Y\) and \(Z_{2}\left( \nu _{2},\beta _{2}\right) =X_{2}+c_{2}Y\) be correlated random variable. Then their joint density can be shown first by re-defining the linear relationships,

$$\begin{aligned} Y= & {} Z_{0}, \\ X_{1}= & {} Z_{1}-c_{1}Z_{0}, \\ X_{2}= & {} Z_{2}-c_{2}Z_{0}. \end{aligned}$$

Then we define the Jacobian

$$\begin{aligned} \mathbf {\zeta }_{i,j}= & {} \begin{bmatrix} \frac{\partial X_1}{\partial Z_0} &{} \frac{\partial X_1}{\partial Z_1} &{} \frac{\partial X_1}{\partial Z_2} \\[1ex] \frac{\partial X_2}{\partial Z_0}&{} \frac{\partial X_2}{\partial Z_1} &{} \frac{\partial Y}{\partial Z_2} \\[1ex] \frac{\partial Y}{\partial Z_0}&{} \frac{\partial Y}{\partial Z_1} &{} \frac{\partial Y}{\partial Z_2} \end{bmatrix}=\begin{bmatrix} -c_{1}&{}1&{}0\\[1ex] -c_{2}&{}0&{}1\\[1ex] 1&{}0&{}0 \end{bmatrix}, \\ |J|= & {} \begin{vmatrix} -c_{1}&1&0\\ -c_{2}&0&1 \\ 1&0&0 \nonumber \end{vmatrix}=1. \end{aligned}$$

We write the density of \(Z_{1},Z_{2}\) given that \(z_{0},z_{1},z_{2}\) are all gamma distributed random variables with \(Ga(\alpha _{0},\beta _{0})\) and \(Ga(\alpha _{1},\beta _{1},\alpha _{1},\beta _{2})\) and then we integrate out \(z_{0}\) to obtain \(f(z_{1},z_{2})\). We begin by writing the component of the density (25),

$$\begin{aligned} f(z_{1},z_{2})= & {} \frac{z_{1}^{\alpha {1}-1}z_{2}^{\alpha {2}-1}e^{-\frac{z_{1}}{\beta _{1}}} e^{-\frac{z_{2}}{\beta _{2}}}\beta _{1}^{-\alpha _{1}}\beta _{2}^{-\alpha _{2}}}{\Gamma (\alpha _{0})\Gamma (\alpha _{1})\Gamma (\alpha _{2})}\int _0^{\min (z_{1},z_{2})}z_{0} ^{\alpha _{0}-1}e^{z_{0}\left( \frac{c_{1}}{\beta _{1}}+\frac{c_{2}}{\beta _{2}}-\frac{1}{\beta _{0}}\right) }\\{} & {} \left( 1-c_{1}\frac{z_{0}}{z_{1}}\right) ^{\alpha _{1}-1}\left( 1-c_{2}\frac{z_{0}}{z_{2}}\right) ^{\alpha _{2}-1}dz_{0}. \end{aligned}$$

Then we write the second component (26),

$$\begin{aligned} f(z_{1},z_{2})= & {} \frac{z_{1}^{\alpha {1}-1}z_{2}^{\alpha {2}-1}e^{-\frac{z_{1}}{\beta _{1}}}e^{-\frac{z_{2}}{\beta _{2}}}\beta _{1}^{-\alpha _{1}}\beta _{2}^{-\alpha _{2}}}{\Gamma (\alpha _{0})\Gamma (\alpha _{1})\Gamma (\alpha _{2})}\int _0^{\min (z_{1},z_{2})}z_{0}^{\alpha _{0}-1} e^{z_{0}\left( \frac{c_{1}}{\beta _{1}}+\frac{c_{2}}{\beta _{2}}-\frac{1}{\beta _{0}}\right) }\\{} & {} \left( 1-c_{1}\frac{z_{0}}{z_{2}}\right) ^{\alpha _{1}-1}\left( 1-c_{2}\frac{z_{0}}{z_{1}}\right) ^{\alpha _{2}-1}dz_{0}. \end{aligned}$$

Without loss of generality, assume that \(z_{1}>z_{2}\), and if we set \(u=c_{1}z_{0}\) together with the function defined in Humbert (1922) (page 79) yields

$$\begin{aligned} f(z_{1},z_{2})= & {} \frac{z_{1}^{\alpha _{1}-1}z_{2}^{\alpha _{2}-1}e^{-\frac{z_{1}}{\beta _{1}}}e^{-\frac{z_{2}}{\beta _{2}}}\beta _{1}^{-\alpha _{1}}\beta _{2}^{-\alpha _{2}}}{\Gamma (\alpha _{0})\Gamma (\alpha _{1})\Gamma (\alpha _{2})}\\{} & {} \times \underbrace{\int _0^{1}u^{\alpha _{0}-1}\left( 1-u\right) ^{\alpha _{1}-1} \left( 1-u\frac{c_{2}z_{1}}{z_{2}c_{1}}\right) ^{\alpha _{2}-1}e^{u\left( z_{1} \left( \frac{1}{\beta _{1}}+\frac{c_{2}}{\beta _{2}{c_{1}}}-\frac{1}{\beta _{0}c_{1}}\right) \right) }du} _{\frac{\Gamma (\alpha _{0})\Gamma (\alpha _{1})\Phi _{1}\left( \alpha _{0},1-\alpha _{2},\alpha _{0} +\alpha _{1};\frac{c_{2}z_{2}}{z_{1}c_{1}},z_{1}\left( \frac{1}{\beta _{1}}+\frac{c_{2}}{c_{1}\beta _{2}} -\frac{1}{\beta _{0}c_{1}} \right) \right) }{\Gamma (\alpha _{0}+\alpha _{2})}}. \end{aligned}$$

Finally, regarding two cases \(z_{1}>z_{2}\) and \(z_{1}<z_{2}\), we obtain respectively the densities,

$$\begin{aligned}{} & {} f(z_{1},z_{2},\alpha _{0},\alpha _{1},\alpha _{2},\beta _{0},\beta _{1},\beta _{2})=\frac{z_{1}^{\alpha _{1}-1}z_{2}^{\alpha _{2}-1}e^{\frac{-z{1}}{\beta _{1}}}e^{\frac{-z{2}}{\beta _{2}}}}{\Gamma (\alpha _{0})\Gamma (\alpha _{1})\Gamma (\alpha _{2})}B(\alpha _{0},\alpha _{1})\nonumber \\{} & {} \times \Phi _{1}\left( \alpha _{0},1-\alpha _{2},\alpha _{0}+\alpha _{1};\frac{c_{2}z_{2}}{c_{1}z_{1}},z_{1}\left( \frac{1}{\beta _{1}}+\frac{c_{2}}{c_{1}\beta _{2}}-\frac{1}{c_{1}\beta _{0}}\right) \right) , \end{aligned}$$
(A.15)
$$\begin{aligned}{} & {} f(z_{1},z_{2},\alpha _{0},\alpha _{1},\alpha _{2},\beta _{0},\beta _{1},\beta _{2})=\frac{z_{1}^{\alpha _{1}-1}z_{2}^{\alpha _{2}-1}e^{\frac{-z{1}}{\beta _{1}}}e^{\frac{-z{2}}{\beta _{2}}}}{\Gamma (\alpha _{0})\Gamma (\alpha _{1})\Gamma (\alpha _{2})}B(\alpha _{0},\alpha _{1})\nonumber \\{} & {} \times \Phi _{1}\left( \alpha _{0},1-\alpha _{1},\alpha _{0}+\alpha _{2};\frac{c_{1}z_{1}}{c_{2}z_{2}},z_{2}\left( \frac{c_{1}}{c_{2}\beta _{1}}+\frac{1}{\beta _{2}}-\frac{1}{c_{2}\beta _{0}}\right) \right) , \end{aligned}$$
(A.16)

where \(\Phi _{1}\) is the confluent hypergeometric function of two variables in Humbert (1922).

Using the derivations above and applying them to the case of three correlated random variables \(Z_{i},Z_{j},Z_{k}\) of the form \(Z_{j}=X_{j}+c_{j}Y\), we obtain the following density where we have the condition (without loss of generality) \(Z_{i}=\min (Z_{i},Z_{j},Z_{k})\),

$$\begin{aligned}{} & {} f(z_{i},z_{j},z_{k},\alpha _{0},\alpha _{i},\alpha _{j},\alpha _{k},\beta _{0},\beta _{i},\beta _{j},\beta _{k})\nonumber \\{} & {} \quad =\frac{z_{i}^{\alpha _{i}-1}z_{j}^{\alpha _{j}-1}z_{k}^{\alpha _{k}-1}e^{-\frac{z_{i}}{\beta _{i}}}e^{-\frac{z_{j}}{\beta _{j}}}e^{-\frac{z_{k}}{\beta _{k}}}\beta _{i}^{-\alpha _{i}}\beta _{j}^{-\alpha _{j}}\beta _{k}^{-\alpha _{k}}}{\Gamma (\alpha _{0})\Gamma (\alpha _{i})\Gamma (\alpha _{j})\Gamma (\alpha _{k})}\nonumber \\{} & {} \times \underbrace{\int _0^{1}u^{\alpha _{0}-1}\left( 1-u\right) ^{\alpha _{i}-1}\left( 1-u\frac{c_{i}z_{i}}{c_{j}z_{j}}\right) ^{\alpha _{j}-1}\left( 1-u\frac{z_{j}}{z_{k}}\right) ^{\alpha _{k}-1}e^{u\left( z_{i}\left( \frac{c_{i}}{c_{j}\beta _{i}}+\frac{1}{\beta _{j}}+\frac{1}{\beta _{k}}-\frac{1}{\beta _{0}c_{i}}\right) \right) }du}_{ \Phi _{2}\left( \alpha _{0},\alpha _{1},\alpha _{2},\alpha _{3},\beta _{0},\beta _{1},\beta _{2},\beta _{3},z_{1},z_{2},z_{3}\right) }.\nonumber \\ \end{aligned}$$
(A.17)

Furthermore, we can write \(\Phi _{2}\) in terms of special functions. Starting with a Taylor expansion of \(e^{x}\) and rewriting (A.17), we obtain

$$\begin{aligned}{} & {} \Phi _{2}\left( \alpha _{0},\alpha _{i},\alpha _{j},\alpha _{k},\beta _{0},\beta _{i},\beta _{j}, \beta _{k},z_{i},z_{j},z_{k}\right) =\sum _{m,n,l=0}^{\infty }F_{D}^{(2)}\\{} & {} \left( \alpha _{0}+m,\alpha _{j}-1,\alpha _{k}-1,\alpha _{i}+\alpha _{0}+m\right) \frac{\Gamma (\alpha _{0}+m)\Gamma (\alpha _{i})}{\Gamma (\alpha _{0}+\alpha _{i}+m)}\times \\{} & {} \frac{\left( z_{i}\left( \frac{c_{i}}{c_{j}\beta _{i}}+\frac{1}{\beta _{j}}+\frac{1}{\beta _{k}}-\frac{1}{\beta _{0}c_{i}}\right) \right) ^{m} (\alpha _{j}-1)^{n}(\alpha _{k}-1)^{l}}{m!n!l!}. \end{aligned}$$

Multiplying Eq. () by \(\Gamma (\alpha _{0}+\alpha _{i})\) and dividing by \(\Gamma (\alpha _{0})\), we obtain \(\Phi _{2}\) in terms of a hypergeometric series,

$$\begin{aligned} \Phi _{2}\left( \alpha _{0},\alpha _{i},\alpha _{j},\alpha _{k},\beta _{0},\beta _{i},\beta _{j},\beta _{k},z_{i},z_{j},z_{k}\right) =\sum _{m=0}^{\infty }\sum _{n=0,l=0}^{\infty }\frac{(\alpha _{0})_{m+n+l}(\alpha _{j}-1)_{n}(\alpha _{k}-1)_{l}}{(\alpha _{0}+\alpha _{i})_{m+n+l}}\times \\ \frac{\left( z_{i}\left( \frac{c_{i}}{c_{j}\beta _{i}}+\frac{1}{\beta _{j}}+\frac{1}{\beta _{k}}-\frac{1}{\beta _{0}c_{i}}\right) \right) ^{m}\left( \frac{c_{i}z_{i}}{c_{j}z_{j}}\right) ^{n}\left( \frac{z_{j}}{z_{k}}\right) ^{l}}{m!n!l!}, \end{aligned}$$

where \((q)_{n}\) is the Pochhammer symbol and \(F_{D}^{2}\) is the Lauricella function of \(n=2\) and type D. \(\square \)

1.6 A.5: Approximate VGC model CDF

Proof

The approximate VGC model CDF can be obtained by using the fact that,

$$\begin{aligned} F(x)= & {} \int _{0}^{\infty }{\mathcal {N}}\left( \frac{(x-\theta g)}{\sqrt{g}}\right) \frac{g^{\alpha -1}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg,\nonumber \\= & {} I(m,n) \end{aligned}$$
(A.18)
$$\begin{aligned}= & {} \int _{0}^{\infty }\int _{-\infty }^{V}\left( {\mathcal {N}}_{n}\left( \frac{n(v)}{\sqrt{g}}-m(v) \sqrt{g}\right) n_{v}g^{-\frac{1}{2}} +{\mathcal {N}}_{m}\left( \frac{n(v)}{\sqrt{g}}-m(v) \sqrt{g}\right) m_{v}g^{\frac{1}{2}}\right) dv\nonumber \\{} & {} \frac{g^{\alpha -1}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg. \end{aligned}$$
(A.19)

Here we set \(m=m(v)\), \(n=n(v)\) and \(m(V)=m\), \(n(V)=n\). We will define the following integrals and parameterizations,

$$\begin{aligned} I^{1}(v)= & {} \int _{0}^{\infty }{\mathcal {N}}_{n}\left( \frac{n(v)}{\sqrt{g}}-m(v) \sqrt{g}\right) \frac{g^{\alpha -\frac{3}{2}}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg\\= & {} \int _{0}^{\infty }\frac{1}{\sqrt{2\pi }}\exp {\left( \frac{-\left( n-mg \right) ^{2}}{2g}\right) }\frac{g^{\alpha -\frac{3}{2}}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg\\ I^{2}(v)= & {} \int _{0}^{\infty }{\mathcal {N}}_{n}\left( \frac{n(v)}{\sqrt{g}}-m(v) \sqrt{g}\right) \frac{g^{\alpha -\frac{1}{2}}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg\\= & {} \int _{0}^{\infty }\frac{1}{\sqrt{2\pi }}\exp {\left( \frac{-\left( n-mg \right) ^{2}}{2g}\right) }\frac{g^{\alpha -\frac{1}{2}}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg \end{aligned}$$

Using Eq. (10) in Chaudhry and Syed (2002), we have

$$\begin{aligned} I^{1}(v)= & {} \int _{0}^{\infty }\frac{1}{\sqrt{2\pi }}\exp {\left( \frac{-\left( n-mg \right) ^{2}}{2g}\right) }\frac{g^{\alpha -\frac{3}{2}}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg\\= & {} \sqrt{\frac{2}{\pi }}e^{mn}\left( \frac{n}{\sqrt{\frac{2}{\beta }+m^{2}}} \right) ^{\alpha -\frac{1}{2}}K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \\ I^{2}(v)= & {} \int _{0}^{\infty }\frac{1}{\sqrt{2\pi }}\exp {\left( \frac{-\left( n-mg \right) ^{2}}{2g}\right) }\frac{g^{\alpha -\frac{1}{2}}e^{-\frac{g}{\beta }}\beta ^{-\alpha }}{\Gamma (\alpha )}dg\\= & {} \sqrt{\frac{2}{\pi }}e^{mn}\left( \frac{n}{\sqrt{\frac{2}{\beta }+m^{2}}} \right) ^{\alpha +\frac{1}{2}}K_{\alpha +\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \end{aligned}$$

In order to obtain F(x) defined in (A.18), we need to compute the following

$$\begin{aligned} I^{1}=\int _{-\infty }^{\infty }I^{1}(v)dv,\nonumber \\ I^{2}=\int _{-\infty }^{\infty }I^{2}(v)dv, \end{aligned}$$
(A.20)

since \(F(x)=I^{1}+I^{2}\). Here, we need a variable transformation and a domain which keeps the Bessel function K(.) inside the integrals in Eq. (A.20) unchanged. We choose the domain \([-\infty ,n]\) and apply the following transformations:

$$\begin{aligned} m(v)=\frac{n\sqrt{m^{2}+\frac{2}{\beta }}}{v},\nonumber \\ n(v)=\sqrt{v^{2}-\frac{2}{\beta }}. \end{aligned}$$
(A.21)

After these transformations, we first obtain

$$\begin{aligned} \int _{-\infty }^{n}I^{1}(v)n_{v}dv= & {} K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \int _{-\infty }^{n}\nonumber \\{} & {} \exp {\left( \frac{m\sqrt{n^{2}+\frac{2}{\beta }}}{v}\sqrt{v^{2}-\frac{2}{\beta }}\right) }\left( \frac{m\sqrt{n^{2}+\frac{2}{\beta }}}{v^{2}}\right) ^{\alpha -1/2}\nonumber \\{} & {} \times v\left( v^{2}-2/\beta \right) ^{\frac{-1}{2}}n_{v}dv \end{aligned}$$
(A.22)
$$\begin{aligned} \int _{-\infty }^{n}I^{2}(v)m_{v}dv= & {} K_{\alpha +\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \int _{-\infty }^{m}\nonumber \\{} & {} \exp {\left( \frac{m\sqrt{n^{2}+\frac{2}{\beta }}}{v}\sqrt{v^{2}-\frac{2}{\beta }}\right) }\left( \frac{m\sqrt{n^{2}+\frac{2}{\beta }}}{v^{2}}\right) ^{\alpha +1/2}\nonumber \\{} & {} \times \frac{m\sqrt{n^{2}+\frac{2}{\beta }}}{v^2}m_{v}dv \end{aligned}$$
(A.23)

Then using the following,

$$\begin{aligned} u= & {} \sqrt{\frac{v^{2}-\frac{2}{\beta }}{v}},\\ v= & {} \sqrt{\frac{2}{\beta (1-u^{2})}},\\ dv= & {} \sqrt{2}u(1-u^{2})^{\frac{-3}{2}}, \end{aligned}$$

we obtain,

$$\begin{aligned} \int _{-\infty }^{n}I^{1}(v)n_{v}dv= & {} K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \int _{-1}^{\sqrt{\frac{n^{2}-\frac{2}{\beta }}{n}}}\\{} & {} \sqrt{2}e^{cu}\left( \frac{(1-u^{2})\beta }{2} \right) ^{\alpha -1/2}u\left( 1-u^{2} \right) ^{-1/2}du,\\ \int _{-\infty }^{n}I^{2}(v)m_{v}dv= & {} K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \int _{-1}^{\sqrt{\frac{n^{2}-\frac{2}{\beta }}{n}}}\\{} & {} \sqrt{2}e^{cu}\left( \frac{(1-u^{2})\beta }{2} \right) ^{\alpha -1/2}\left( 1-u^{2} \right) ^{-1/2}du. \end{aligned}$$

Then setting \(q={\sqrt{\frac{n^{2}-\frac{2}{\beta }}{n}}}\), we obtain

$$\begin{aligned} I^{1}= & {} \int _{-\infty }^{n}I^{1}(v)n_{v}dv= K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \\ {}\times & {} \int _{0}^{1} \sqrt{2}e^{c\left( u(1+q)-1\right) }\left( \frac{1-\left( u(1+q)-1\right) ^{2})\beta }{2} \right) ^{\alpha -1/2}\\{} & {} \left( u(1+q)-1\right) \left( 1-\left( u(1+q)-1\right) ^{2} \right) ^{-1/2}du,\\= & {} K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \times \int _{0}^{1} u(1+q)^{\alpha }\left( 1-\frac{u(1+q)}{2} \right) ^{\alpha -1}e^{c\left( u(1+q)-1\right) }\frac{C^{\alpha +\frac{1}{2}}}{\sqrt{2\pi }}du\\ I^{2}= & {} \int _{-\infty }^{n}I^{2}(v)m_{v}dv=K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) \\{} & {} \times \int _{0}^{1} u(1+q)^{\alpha -1}\left( 1-\frac{u(1+q)}{2} \right) ^{\alpha -1}e^{c\left( u(1+q)-1\right) }\frac{C^{\alpha +\frac{1}{2}}}{\sqrt{2\pi }}du\\ \end{aligned}$$

Then in the context of confluent hypergeometric function of second kind (Humbert 1922, page 79) or Gradshteyn and Ryzhik (2007), formula 3.385), for \(I^{1} \) we have

$$\begin{aligned} a=\alpha +1,\quad \beta =1-\alpha ,\quad \gamma =\alpha +2 \end{aligned}$$

for \(I^{2}\), we have

$$\begin{aligned} a=\alpha ,\quad \beta =1-\alpha ,\quad \gamma =\alpha +1 \end{aligned}$$

After collecting all these and using the definition of the confluent hypergeometric function of the second kind we obtain,

$$\begin{aligned} F(x)= & {} I^{1}+I^{2}=e^{-C}\beta ^{\alpha }\frac{C^{\alpha +1/2}}{\sqrt{2\pi }}\Phi _{1}\left( \alpha ,1-\alpha ,\alpha +1,\frac{1+q}{2},c(1+q) \right) \\{} & {} \times \frac{K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) }{\alpha \Gamma (\alpha )}\\{} & {} -e^{-C}\beta ^{\alpha }\frac{C^{\alpha +1/2}}{\sqrt{2\pi }}\Phi _{1}\left( \alpha +1,1-\alpha ,\alpha +2,\frac{1+q}{2},c(1+q) \right) \\{} & {} \times \frac{K_{\alpha -\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) }{(1+\alpha )\Gamma (\alpha )}\\{} & {} +e^{-C}\beta ^{\alpha }\frac{C^{\alpha +1/2}}{\sqrt{2\pi }}\Phi _{1}\left( \alpha ,1-\alpha ,\alpha +1,\frac{1+q}{2},c(1+q) \right) \\{} & {} \times \frac{K_{\alpha +\frac{1}{2}}\left( |n|\sqrt{m^{2}+\frac{2}{\beta }} \right) }{\alpha \Gamma (\alpha )}. \end{aligned}$$

where \(C=n\sqrt{m^{2}+\frac{2}{\beta }}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akyildirim, E., Hekimoglu, A.A., Sensoy, A. et al. Extending the Merton model with applications to credit value adjustment. Ann Oper Res 326, 27–65 (2023). https://doi.org/10.1007/s10479-023-05289-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05289-3

Keywords

JEL Classification

Navigation