Skip to main content
Log in

A new dynamic multi-attribute decision making method based on Markov chain and linear assignment

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents a new Dynamic Multi-Attribute Decision-Making method based on Markovian property, which can predict the performance of each alternative in the future and at the same time allows modeling interrelationship among different periods. To this aim, the criteria and decision alternatives in different periods are determined at first, and the information of decision matrices over the decision-making horizon is gathered. To increase the robustness of the results, criteria weights are extracted using the Entropy method in each period and alternatives performance is evaluated using different Multi-Attribute Decision-Making methods. To attain the final rank of alternatives in each period, the results of different methods are aggregated by the Correlation coefficient and standard deviation method. Following this, the rank transformation matrices of alternatives during the evaluation horizon are extracted and the stable rank probability of alternatives is calculated based on limiting probability. Eventually, the overall rank of alternatives is determined using a linear assignment-based method. The proposed model has been used in the promotion of the sales staff in a private company to show the model effectiveness in a real-world problem. Results are compared with some well-known methods (five methods, to be exact). Finally, the trustworthiness and acceptability of the method are assessed based on features discussed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhavan, P., Barak, S., Maghsoudlou, H., & Antuchevičienė, J. (2015). FQSPM-SWOT for strategic alliance planning and partner selection; case study in a holding car manufacturer company. Technological and Economic Development of Economy, 21(2), 165–185.

    Article  Google Scholar 

  • Arrais-Castro, A., Varela, M. L. R., Putnik, G. D., Ribeiro, R., & Dargam, F. C. (2015). Collaborative negotiation platform using a dynamic multi-criteria decision model. International Journal of Decision Support System Technology (IJDSST), 7(1), 1–14.

    Article  Google Scholar 

  • Asadabadi, M. R. (2016). A Markovian-QFD approach in addressing the changing priorities of the customer needs. International Journal of Quality and Reliability Management, 33, 1062–1075.

    Article  Google Scholar 

  • Asadabadi, M. R. (2017). A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain. European Journal of Operational Research, 263(3), 1049–1062.

    Article  Google Scholar 

  • Asadabadi, M. R. (2018). The stratified multi-criteria decision-making method. Knowledge-Based Systems, 162, 115–123.

    Article  Google Scholar 

  • Azadfallah, M. (2017). Supplier performance prediction for future collaboration: Based on Markov chain model. International Journal of Business Analytics (IJBAN), 4(4), 48–59.

    Article  Google Scholar 

  • Bali, O., Dagdeviren, M., & Gumus, S. (2015). An integrated dynamic intuitionistic fuzzy MADM approach for personnel promotion problem. Kybernetes, 42, 1422–1436.

    Article  Google Scholar 

  • Baykasoğlu, A., & Gölcük, İ. (2019). A dynamic multiple attribute decision making model with learning of fuzzy cognitive maps. Computers and Industrial Engineering, 135, 1063–1076.

    Article  Google Scholar 

  • Bernardo, J. J., & Blin, J. M. (1977). A programming model of consumer choice among multi-attributed brands. Journal of Consumer Research, 4(2), 111–118.

    Article  Google Scholar 

  • Brauers, W. K. M., & Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, 16(1), 5–24.

    Article  Google Scholar 

  • Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteria decision making. Decision Support Systems, 52(1), 52–60.

    Article  Google Scholar 

  • Celik, E., Gul, M., Aydin, N., Gumus, A. T., & Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329–341.

    Article  Google Scholar 

  • Chen, Y., & Li, B. (2011). Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers. Scientia Iranica, 18(2), 268–274.

    Article  Google Scholar 

  • Cheng, Y., Li, Y., & Yang, J. (2020). Novel approach of obtaining dynamic multi-attribute weight for intuitionistic fuzzy environment based on fractional integrals. International Journal of Fuzzy Systems, 22(1), 242–256.

    Article  Google Scholar 

  • Chu, A. T. W., Kalaba, R. E., & Spingarn, K. (1979). A comparison of two methods for determining the weights of belonging to fuzzy sets. Journal of Optimization Theory and Applications, 27(4), 531–538.

    Article  Google Scholar 

  • Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Journal of the Operations Research Society of America, 2(2), 172–187.

    Article  Google Scholar 

  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770.

    Article  Google Scholar 

  • Durrett, R. (2016). Essentials of stochastic processes (3rd ed.). Springer.

    Book  Google Scholar 

  • Fei, L., & Feng, Y. (2021). A dynamic framework of multi-attribute decision making under Pythagorean fuzzy environment by using Dempster-Shafer theory. Engineering Applications of Artificial Intelligence, 101, 104213.

    Article  Google Scholar 

  • Ferreira, F. A., & Santos, S. P. (2021). Two decades on the MACBETH approach: A bibliometric analysis. Annals of Operations Research, 296(1), 901–925.

    Article  Google Scholar 

  • Georgiou, A. C., & Tsantas, N. (2002). Modelling recruitment training in mathematical human resource planning. Applied Stochastic Models in Business and Industry, 18(1), 53–74.

    Article  Google Scholar 

  • Glanville, R., Griffiths, D., Baron, P., Liao, H., Xu, Z., & Xu, J. (2014). An approach to hesitant fuzzy multi-stage multi-criterion decision making. Kybernetes, 43, 1447–1468.

    Article  Google Scholar 

  • Gölcük, İ, & Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346–366.

    Article  Google Scholar 

  • Govindan, K., Agarwal, V., Darbari, J. D., & Jha, P. C. (2019). An integrated decision-making model for the selection of sustainable forward and reverse logistic providers. Annals of Operations Research, 273(1–2), 607–650.

    Article  Google Scholar 

  • Hashemkhani Zolfani, S., Aghdaie, M. H., Derakhti, A., Zavadskas, E. K., & Varzandeh, M. H. M. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications, 40(17), 7111–7121.

    Article  Google Scholar 

  • Hashemkhani Zolfani, S., Maknoon, R., & Zavadskas, E. K. (2016a). An introduction to prospective multiple attribute decision making (PMADM). Technological and Economic Development of Economy, 22(2), 309–326.

    Article  Google Scholar 

  • Hashemkhani Zolfani, S., Maknoon, R., & Zavadskas, E. K. (2016b). Multiple attribute decision making (MADM) based scenarios. International Journal of Strategic Property Management, 20(1), 101–111.

    Article  Google Scholar 

  • Hashemkhani Zolfani, S., Zavadskas, E. K., Khazaelpour, P., & Cavallaro, F. (2018). The multi-aspect criterion in the PMADM outline and its possible application to sustainability assessment. Sustainability, 10(12), 4451.

    Article  Google Scholar 

  • Heidary Dahooie, J., Razavi Hajiagha, S. H., Farazmehr, S., Zavadskas, E. K., & Antucheviciene, J. (2021). A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Computers and Operations Research, 129, 105223.

    Article  Google Scholar 

  • Heidary Dahooie, J., Zavadskas, E. K., Firoozfar, H. R., Vanaki, A. S., Mohammadi, N., & Brauers, W. K. M. (2019). An improved fuzzy MULTIMOORA approach for multi-criteria decision making based on objective weighting method (CCSD) and its application to technological forecasting method selection. Engineering Applications of Artificial Intelligence, 79, 114–128.

    Article  Google Scholar 

  • Hwang, C. L., & Lin, M. J. (1987). Group decision making under multiple criteria: methods and applications (Vol. 281). Springer Science & Business Media.

    Book  Google Scholar 

  • Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. multiple attribute decision making (pp. 58–191). Springer.

    Chapter  Google Scholar 

  • Jana, C., & Pal, M. (2021). A dynamical hybrid method to design decision making process based on GRA approach for multiple attributes problem. Engineering Applications of Artificial Intelligence, 100, 104203.

    Article  Google Scholar 

  • Jassbi, J. J., Ribeiro, R. A., & Varela, L. R. (2014). Dynamic MCDM with future knowledge for supplier selection. Journal of Decision Systems, 23(3), 232–248.

    Article  Google Scholar 

  • Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258.

    Article  Google Scholar 

  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451.

    Article  Google Scholar 

  • Leong, T. Y. (1998). Multiple perspective dynamic decision making. Artificial Intelligence, 105(1–2), 209–261.

    Article  Google Scholar 

  • Lin, Y. H., Lee, P. C., & Ting, H. I. (2008). Dynamic multi-attribute decision making model with grey number evaluations. Expert Systems with Applications, 35(4), 1638–1644.

    Article  Google Scholar 

  • Liu, J., Liu, P., Liu, S. F., Zhou, X. Z., & Zhang, T. (2015). A study of decision process in MCDM problems with large number of criteria. International Transactions in Operational Research, 22(2), 237–264.

    Article  Google Scholar 

  • Liu, J., Zhao, H. K., Li, Z. B., & Liu, S. F. (2017). Decision process in MCDM with large number of criteria and heterogeneous risk preferences. Operations Research Perspectives, 4, 106–112.

    Article  Google Scholar 

  • Lou, C., Peng, Y., Kou, G., & Ge, X. (2010, June). DMCDM: a dynamic multi criteria decision making model for sovereign credit default risk evaluation. In The 2nd International conference on software engineering and data mining (pp. 489–494). IEEE.

  • Ma, W. M., Zhang, H., Sun, B. Z., Wang, N. L., & Zhao, H. Y. (2019). Dynamic hybrid multiple attribute decision-making problem based on reference point adaptation. Mathematical Problems in Engineering, 2019, 1–8.

    Google Scholar 

  • Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571.

    Article  Google Scholar 

  • Márquez, A. C., González-Prida, V., Viveros, P., & Barberá, L. (2014). Dynamic analytic hierarchy process: AHP method adapted to a changing environment. Journal of Manufacturing Technology Management, 25(4), 457–475.

    Article  Google Scholar 

  • Mondal, P. (2020). Computing semi-stationary optimal policies for multichain semi-Markov decision processes. Annals of Operations Research, 287(2), 843–865.

    Article  Google Scholar 

  • Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials and Design, 121, 237–253.

    Article  Google Scholar 

  • Nawaz, F., Asadabadi, M. R., Janjua, N. K., Hussain, O. K., Chang, E., & Saberi, M. (2018). An MCDM method for cloud service selection using a Markov chain and the best-worst method. Knowledge-Based Systems, 159, 120–131.

    Article  Google Scholar 

  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

    Article  Google Scholar 

  • Petridis, K., Drogalas, G., & Zografidou, E. (2021). Internal auditor selection using a TOPSIS/non-linear programming model. Annals of Operations Research, 296(1), 513–539.

    Article  Google Scholar 

  • Pomerol, J. C., & Barba-Romero, S. (2012). Multicriterion decision in management: Principles and practice (Vol. 25). Springer Science & Business Media.

    Google Scholar 

  • Razavi Hajiagha, S. H., Amoozad Mahdiraji, H., & Hashemi, S. S. (2018). Total area based on orthogonal vectors (TAOV) as a novel method of multi-criteria decision aid. Technological and Economic Development of Economy, 24(4), 1679–1694.

    Article  Google Scholar 

  • Rodríguez, R. M., Martínez, L., Torra, V., Xu, Z. S., & Herrera, F. (2014). Hesitant fuzzy sets: State of the art and future directions. International Journal of Intelligent Systems, 29(6), 495–524.

    Article  Google Scholar 

  • Ross, S. M., Kelly, J. J., Sullivan, R. J., Perry, W. J., Mercer, D., Davis, R. M., Washburn, T. D., Sager, E. V., Boyce, J. B., & Bristow, V. L. (1996). Stochastic processes (Vol. 2). Wiley.

    Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.

    Article  Google Scholar 

  • Saaty, T. L. (2007). Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling, 46(7–8), 860–891.

    Article  Google Scholar 

  • Saaty, T. L., & Ergu, D. (2015). When is a decision-making method trustworthy? Criteria for evaluating multi-criteria decision-making methods. International Journal of Information Technology and Decision Making, 14(06), 1171–1187.

    Article  Google Scholar 

  • Šaparauskas, J., Kazimieras Zavadskas, E., & Turskis, Z. (2011). Selection of facade’s alternatives of commercial and public buildings based on multiple criteria. International Journal of Strategic Property Management, 15(2), 189–203.

    Article  Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics (2nd édn). New York: par Dover Publications, 1972.

  • Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing theory (Vol. 399). John Wiley & Sons.

    Book  Google Scholar 

  • Siswanto, J., & Andriani, M. (2009). Integrated competency model in call center industry. In Proceedings of APIEMS 2009 (pp. 2292–2299).

  • Srinivasan, V., & Shocker, A. D. (1973). Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika, 38(4), 473–493.

    Article  Google Scholar 

  • Su, Z. X., Chen, M. Y., Xia, G. P., & Wang, L. (2011). An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Systems with Applications, 38(12), 15286–15295.

    Article  Google Scholar 

  • Tavana, M., Soltanifar, M., & Santos-Arteaga, F. J. (2021). Analytical hierarchy process: Revolution and evolution. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04432-2

    Article  Google Scholar 

  • Varmazyar, M., Dehghanbaghi, M., & Afkhami, M. (2016). A novel hybrid MCDM model for performance evaluation of research and technology organizations based on BSC approach. Evaluation and Program Planning, 58, 125–140.

    Article  Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1947). Theory of games and econ omic behavior (2nd rev, p. 641). Princeton University Press. https://psycnet.apa.org/record/1947-03159-000

  • Wang, P., Zhu, Z., & Wang, Y. (2016). A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Information Sciences, 345, 27–45.

    Article  Google Scholar 

  • Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1–2), 1–12.

    Article  Google Scholar 

  • Wang, Y., Shi, X., Sun, J., & Qian, W. (2014). A grey interval relational degree-based dynamic multiattribute decision making method and its application in investment decision making. Mathematical Problems in Engineering, 2014, 1–6.

    Google Scholar 

  • Wei, G. (2009a). UDWGA operator and its application to dynamic multiple attribute decision making. In 2009a IITA International Conference on Services Science, Management and Engineering (pp. 81–84). IEEE.

  • Wei, G. W. (2009b). Some geometric aggregation functions and their application to dynamic multiple attribute decision making in the intuitionistic fuzzy setting. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17(02), 179–196.

    Article  Google Scholar 

  • Wei, G. (2011). Grey relational analysis model for dynamic hybrid multiple attribute decision making. Knowledge-Based Systems, 24(5), 672–679.

    Article  Google Scholar 

  • Xia, Y., Liu, C., Li, Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Systems with Applications, 78, 225–241.

    Article  Google Scholar 

  • Xie, N., Yang, Y., Mi, C., Bali, O., & Gumus, S. (2014). Multi-terms MADM procedures with GRA and TOPSIS based on IFS and IVIFS. Grey Systems Theory and Application. https://doi.org/10.1108/GS-12-2013-0041/full/html

    Article  Google Scholar 

  • Xu, Z. (2008). On multi-period multi-attribute decision making. Knowledge-Based Systems, 21(2), 164–171.

    Article  Google Scholar 

  • Xu, Z. S. (2009). A method based on the dynamic weighted geometric aggregation operator for dynamic hybrid multi-attribute group decision making. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17(01), 15–33.

    Article  Google Scholar 

  • Xu, Z. (2011). Approaches to multi-stage multi-attribute group decision making. International Journal of Information Technology and Decision Making, 10(01), 121–146.

    Article  Google Scholar 

  • Xu, Z., & Yager, R. R. (2008). Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning, 48(1), 246–262.

    Article  Google Scholar 

  • Yang, Z., Li, J., Huang, L., & Shi, Y. (2017). Developing dynamic intuitionistic normal fuzzy aggregation operators for multi-attribute decision-making with time sequence preference. Expert Systems with Applications, 82, 344–356.

    Article  Google Scholar 

  • Yao, S. (2010). A distance method for multi-period fuzzy multi-attribute decision making. In 2010 International conference on E-product E-service and E-entertainment (pp. 1–4). IEEE.

  • Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57, 2501–2519.

    Article  Google Scholar 

  • Yin, S., Li, B., & Dong, H. (2018). A novel dynamic multi-attribute decision-making method based on the improved weights function and score function, and its application. Journal of Intelligent and Fuzzy Systems, 35(6), 6217–6227.

    Article  Google Scholar 

  • Yin, S., Li, B., Dong, H., & Xing, Z. (2017). A new dynamic multicriteria decision-making approach for green supplier selection in construction projects under time sequence. Mathematical problems in Engineering. https://doi.org/10.1155/2017/7954784

    Article  Google Scholar 

  • Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. R., & Hashemi, S. S. (2014). Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Applied Soft Computing, 24, 1013–1021.

    Article  Google Scholar 

  • Zhang, Y., Xu, Z., Hao, Z., & Liao, H. (2021). Dynamic assessment of Internet public opinions based on the probabilistic linguistic Bayesian network and Prospect theory. Applied Soft Computing, 106, 107359.

    Article  Google Scholar 

  • Zulueta, Y., Martínez-Moreno, J., Martínez, L., & Espinilla, M. (2013). A discriminative dynamic index based on bipolar aggregation operators for supporting dynamic multi-criteria decision making. Aggregation functions in theory and in practise (pp. 237–248). Springer.

    Chapter  Google Scholar 

  • Zulueta, Y., Martinez-Moreno, J., Pérez, R. B., & Martinez, L. (2014). A discrete time variable index for supporting dynamic multi-criteria decision making. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22(01), 1–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Heidary-Dahooie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiagha, S.H.R., Heidary-Dahooie, J., Meidutė-Kavaliauskienė, I. et al. A new dynamic multi-attribute decision making method based on Markov chain and linear assignment. Ann Oper Res 315, 159–191 (2022). https://doi.org/10.1007/s10479-022-04644-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04644-0

Keywords

Navigation