Skip to main content

Natural language interactions enhanced by data visualization to explore insurance claims and manage risk


Claims analysis and risk management is key to avoiding fraud and managing risk in the life insurance industry. Though visualization plays a fundamental role in supporting analysis tasks in the business domain, exploring user behaviour remains a challenging task. The prevalence of natural language interactions enhanced with data visualization has become quite the norm. With the increasing demand for visualization tools and varying levels of user expertise, the use of a natural language interface (NLI) is common. However, the design of visual analytics tools enhanced by NLIs for risk management and claim analysis requires thorough task analysis and domain expertise. In this work, we investigate an alternative approach through a natural language interaction-based interactive visualization such as a chart, pie chart, or histogram, which can be used for insurance claim analysis and risk management. We design a new visual analytics solution named InsCRMVis which is enhanced by NLIs. We present an expert evaluation of InsCRMVis based on the Task Load Index questionnaire which is currently the standard metrics measure to investigate its usability (effectiveness, efficiency, satisfaction) to support human task performance. To evaluate its performance, we performed a user study of ten experts which suggests that InsCRMVis can provide better insights and assistance to insurance managers in reducing loss and guiding changes to insurance premium policies. Furthermore, we provide a concise set of guidelines that can be used when visualizing risk to avoid dangers in the insurance domain. We discuss the challenges associated with the use of a visualization system in the insurance industry, focusing on aspects related to visualization research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  • Afzal, S., Ghani, S., Tissington, G., Langodan, S., Dasari, H. P., Raitsos, D., Gittings, J., Jamil, T., Srinivasan, M., & Hoteit, I. (2019). Redseaatlas: A visual analytics tool for spatio-temporal multivariate data of the red sea. In EnvirVis@ EuroVis (pp. 25–32).

  • APRA (2019) releases general insurance statistics for December 2019.

  • Alsaiari, A., Aurisano, J., & Johnson, A. (2020). Evaluating strategies of exploratory visual data analysis in multi device environments.

  • Archambault, D., Purchase, H., & Pinaud, B. (2010). Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Transactions on Visualization and Computer Graphics, 17, 539–552.

    Article  Google Scholar 

  • Arych, M., & Darcy, W. (2020). General trends and competitiveness of Australian life insurance industry. Journal of International Studies, 13, 212–233.

    Article  Google Scholar 

  • Borgo, R., Micallef, L., Bach, B., McGee, F., & Lee, B. (2018). Information visualization evaluation using crowdsourcing. In Computer graphics forum (pp. 573–595). Wiley Online Library.

  • Ceneda, D., Gschwandtner, T., May, T., Miksch, S., Schulz, H. J., Streit, M., & Tominski, C. (2016). Characterizing guidance in visual analytics. IEEE Transactions on Visualization and Computer Graphics, 23, 111–120.

    Article  Google Scholar 

  • Chang, R., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E., Ziemkiewicz, C., Kern, D., & Sudjianto, A. (2007). Wirevis: Visualization of categorical, time-varying data from financial transactions. In 2007 IEEE symposium on visual analytics science and technology. IEEE (pp. 155–162).

  • Chen, N., Ribeiro, B., Vieira, A., & Chen, A. (2013). Clustering and visualization of bankruptcy trajectory using self-organizing map. Expert Systems with Applications, 40, 385–393.

    Article  Google Scholar 

  • Conati, C., Carenini, G., Hoque, E., Steichen, B., & Toker, D. (2014). Evaluating the impact of user characteristics and different layouts on an interactive visualization for decision making. In Computer graphics forum ([pp. 371–380) .Wiley Online Library.

  • Dasgupta, A., Kosara, R., & Gosink, L. (2015). Vimtex: A visualization interface for multivariate, time-varying, geological data exploration. In Computer graphics forum (pp. 341–350). Wiley Online Library.

  • Elmqvist, N., Stasko, J., & Tsigas, P. (2008). Datameadow: A visual canvas for analysis of large-scale multivariate data. Information Visualization, 7, 18–33.

    Article  Google Scholar 

  • Eppler, M. J., & Aeschimann, M. (2009). A systematic framework for risk visualization in risk management and communication. Risk Management, 11, 67–89.

    Article  Google Scholar 

  • Fujiwara, T., Sakamoto, N., Nonaka, J., Yamamoto, K., Ma, K. L., et al. (2020). A visual analytics framework for reviewing multivariate time-series data with dimensionality reduction. arXiv preprint arXiv:2008.01645

  • Gao, T., Dontcheva, M., Adar, E., Liu, Z., & Karahalios, K. G. (2015). Datatone: Managing ambiguity in natural language interfaces for data visualization, In Proceedings of the 28th annual ACM symposium on user interface software & technology pp. 489–500.

  • Han, Y., Rozga, A., Stasko, J., & Abowd, G. D. (2013). Visual exploration of common behaviors for developmental health. Visual Analytics in Healthcare.

  • Hoque, E., Setlur, V., Tory, M., & Dykeman, I. (2017). Applying pragmatics principles for interaction with visual analytics. IEEE Transactions on Visualization and Computer Graphics, 24, 309–318.

    Article  Google Scholar 

  • Huang, M. L., Liang, J., & Nguyen, Q. V. (2009). A visualization approach for frauds detection in financial market. In 2009 13th international conference information visualisation (pp. 197–202) IEEE .

  • Iovine, A., Narducci, F., & Semeraro, G. (2020). Conversational recommender systems and natural language: A study through the converse framework. Decision Support Systems, 131, 113250.

    Article  Google Scholar 

  • Islam, M. T., Islam, M. R., Akter, S., & Kawser, M. (2020c). Designing dashboard for exploring tourist hotspots in Bangladesh. In 2020 23rd international conference on computer and information technology (ICCIT) (pp. 1–6). IEEE.

  • Islam, M. R., Liu, S., Razzak, I., Kabir, M. A., Wang, X., Tilocca, P., & Xu, G. (2020a). Mhivis: Visual analytics for exploring mental illness of policyholders in life insurance industry. In 2020 7th international conference on behavioural and social Computing (BESC) (pp. 1–4) IEEE.

  • Islam, M. R., Akter, S., Ratan, M. R., Kamal, A. R. M., & Xu, G. (2021). Deep visual analytics (dva): Applications, challenges and future directions. Human-Centric Intelligent Systems, 1, 3–17.

    Article  Google Scholar 

  • Islam, M. R., Liu, S., Biddle, R., Razzak, I., Wang, X., Tilocca, P., & Xu, G. (2021). Discovering dynamic adverse behavior of policyholders in the life insurance industry. Technological Forecasting and Social Change, 163, 120486.

    Article  Google Scholar 

  • Islam, M. R., Liu, S., Wang, X., & Xu, G. (2020). Deep learning for misinformation detection on online social networks: A survey and new perspectives. Social Network Analysis and Mining, 10, 1–20.

    Article  Google Scholar 

  • Keim, D., Andrienko, G., Fekete, J. D., Görg, C., Kohlhammer, J., & Melançon, G. (2008). Visual analytics: Definition, process, and challenges. In Information visualization (pp. 154–175). Springer.

  • Ko, S., Cho, I., Afzal, S., Yau, C., Chae, J., Malik, A., Beck, K., Jang, Y., Ribarsky, W., & Ebert, D. S. (2016). A survey on visual analysis approaches for financial data. In Computer graphics forum (pp. 599–617). Wiley Online Library.

  • Koldijk, S., Bernard, J., Ruppert, T., Kohlhammer, J., Neerincx, M., & Kraaij, W. (2015). Visual analytics of work behavior data-insights on individual differences.

    Article  Google Scholar 

  • Laskar, M. T. R., Hoque, E., & Huang, J. (2020). Query focused abstractive summarization via incorporating query relevance and transfer learning with transformer models. In Canadian conference on artificial intelligence (pp. 342–348). Springer.

  • Leite, R. A., Gschwandtner, T., Miksch, S., Gstrein, E., & Kuntner, J. (2015). Visual analytics for fraud detection and monitoring. In 2015 IEEE conference on visual analytics science and technology (VAST) (pp. 201–202). IEEE .

  • Leite, R. A., Gschwandtner, T., Miksch, S., Gstrein, E., & Kuntner, J. (2020). Neva: Visual analytics to identify fraudulent networks. In Computer Graphics Forum, Wiley Online Library. (pp. 344–359).

  • Leite, R. A., Gschwandtner, T., Miksch, S., Kriglstein, S., Pohl, M., Gstrein, E., & Kuntner, J. (2017). Eva: Visual analytics to identify fraudulent events. IEEE Transactions on Visualization and Computer Graphics, 24, 330–339.

    Article  Google Scholar 

  • Life Insurance Insights (2020).

  • Lo, V. E. W., & Green, P. A. (2013). Development and evaluation of automotive speech interfaces: useful information from the human factors and the related literature. International Journal of Vehicular Technology.

    Article  Google Scholar 

  • Narechania, A., Srinivasan, A., & Stasko, J. (2020). Nl4dv: A toolkit for generating analytic specifications for data visualization from natural language queries. arXiv preprint arXiv:2008.10723

  • Niu, Z., Cheng, D., Zhang, L., & Zhang, J. (2018). Visual analytics for networked-guarantee loans risk management. In 2018 IEEE Pacific Visualization Symposium (PacificVis) (pp. 160–169). IEEE.

  • Obeid, J., & Hoque, E. (2020). Chart-to-text: Generating natural language descriptions for charts by adapting the transformer model. arXiv preprint arXiv:2010.09142 .

  • Rudolph, S., Savikhin, A., & Ebert, D. S. (2009). Finvis: Applied visual analytics for personal financial planning. In 2009 IEEE symposium on visual analytics science and technology (pp. 195–202). IEEE.

  • Satyanarayan, A., Moritz, D., Wongsuphasawat, K., & Heer, J. (2016). Vega-lite: A grammar of interactive graphics. IEEE Transactions on Visualization and Computer Graphics, 23, 341–350.

    Article  Google Scholar 

  • Schulz, H. J., Angelini, M., Santucci, G., & Schumann, H. (2015). An enhanced visualization process model for incremental visualization. IEEE Transactions on Visualization and Computer Graphics, 22, 1830–1842.

    Article  Google Scholar 

  • Setlur, V., Battersby, S. E., Tory, M., Gossweiler, R., & Chang, A. X. (2016). Eviza: A natural language interface for visual analysis. In Proceedings of the 29th annual symposium on user interface software and technology (pp. 365–377).

  • Soriano-Vargas, A., Hamann, B., & de Oliveira, M. C. F. (2020). Tv-mv analytics: A visual analytics framework to explore time-varying multivariate data. Information Visualization, 19, 3–23.

    Article  Google Scholar 

  • Srinivasan, A., & Stasko, J. (2017). Natural language interfaces for data analysis with visualization: Considering what has and could be asked. In Proceedings of the Eurographics/IEEE VGTC conference on visualization: Short papers (pp. 55–59).

  • Srinivasan, A., Lee, B., Henry Riche, N., Drucker, S. M., & Hinckley, K., (2020). Inchorus: Designing consistent multimodal interactions for data visualization on tablet devices. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–13).

  • Srinivasan, A., & Stasko, J. (2020). How to ask what to say?: Strategies for evaluating natural language interfaces for data visualization. IEEE Computer Graphics and Applications, 40, 96–103.

    Article  Google Scholar 

  • Stolte, C., Tang, D., & Hanrahan, P. (2002). Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics, 8, 52–65.

    Article  Google Scholar 

  • Su, T., Cao, Z., Lv, Z., Liu, C., & Li, X. (2016). Multi-dimensional visualization of large-scale marine hydrological environmental data. Advances in Engineering Software, 95, 7–15.

    Article  Google Scholar 

  • Sun, Y., Leigh, J., Johnson, A., & Lee, S. (2010). Articulate: A semi-automated model for translating natural language queries into meaningful visualizations. In International symposium on smart graphics (pp. 184–195). Springer.

  • Tableau Ask Data.

  • Thomas, D. P., Borgo, R., Laramee, R. S., & Hands, S. (2017). Qcdvis: A tool for the visualisation of quantum chromodynamics (qcd) data. In Proceedings of the 33rd spring conference on computer graphics (pp. 1–14).

  • Thompson, J., Srinivasan, A., & Stasko, J. (2018). Tangraphe: interactive exploration of network visualizations using single hand, multi-touch gestures. In Proceedings of the 2018 international conference on advanced visual interfaces (pp. 1–5).

  • Tosado, J., Zdilar, L., Elhalawani, H., Elgohari, B., Vock, D. M., Marai, G. E., et al. (2020). clustering of largely right-censored oropharyngeal head and neck cancer patients for discriminative groupings to improve outcome prediction. Scientific Reports, 10, 1–14.

    Article  Google Scholar 

  • Trelles Trabucco, J., Lee, D., Derrible, S., & Marai, G. E. (2019). Visual analysis of a smart city’s energy consumption. Multimodal Technologies and Interaction, 3, 30.

    Article  Google Scholar 

  • Vo, N. N., Liu, S., Li, X., & Xu, G. (2021). Leveraging unstructured call log data for customer churn prediction. Knowledge-Based Systems, 212, 106586.

    Article  Google Scholar 

  • Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D. A., & Aigner, W. (2015). A survey of visualization systems for malware analysis. In Eurographics conference on visualization (EuroVis) (pp. 105–125).

  • Walker, J., Borgo, R., & Jones, M. W. (2015). Timenotes: a study on effective chart visualization and interaction techniques for time-series data. IEEE Transactions on Visualization and Computer Graphics, 22, 549–558.

    Article  Google Scholar 

  • Yue, X., Shu, X., Zhu, X., Du, X., Yu, Z., Papadopoulos, D., & Liu, S. (2018). Bitextract: Interactive visualization for extracting bitcoin exchange intelligence. IEEE Transactions on Visualization and Computer Graphics, 25, 162–171.

    Article  Google Scholar 

  • Yu, B., & Silva, C. T. (2019). Flowsense: A natural language interface for visual data exploration within a dataflow system. IEEE Transactions on Visualization and Computer Graphics, 26, 1–11.

    Article  Google Scholar 

  • Zerafa, J., Islam, M. R., Kabir, A., & Xu, G. (2021). Extravis: Exploration of traffic incidents using visual interactive system. In 25th international conference information visualisation (IV 2021). IEEE, Institute of Electrical and Electronics Engineers.

Download references


This work is partially supported by the Australian Research Council (ARC) under Grant No. DP200101374 and LP170100891. We would like to thank the Australian insurance company for providing us with the unique dataset and the authors of NL4DV system, especially Arpit Narechania, for supporting us to run the code.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guandong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Razzak, I., Wang, X. et al. Natural language interactions enhanced by data visualization to explore insurance claims and manage risk. Ann Oper Res (2022).

Download citation

  • Accepted:

  • Published:

  • DOI:


  • User interface design
  • Natural language interfaces
  • Risk management