Skip to main content
Log in

The intellectual structure of the waste management field

  • S.I.: BALCOR-2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Waste management is an important issue in the field of green logistics. It has consequently drawn the attention of the scientific community and has been extensively investigated over the past few years. Through an analysis of the existing waste management literature, we attempt in this paper to better understand past developments in this area as well as emerging trends and recent developments. Emphasis will be put mainly on Operations Research and Management Science techniques when dealing with waste management problems. To reach this target, we follow bibliometric-based methods, specifically Co-citation Analysis, Betweenness Centrality and Burst Detection combined with network visualization. After identifying the research papers published between 1990 and 2018 within the Thomson Reuters Web of Science database, a Co-citation network has been constructed. We propose an algorithm for modularity-based clustering in small networks that iteratively solves a sequence of Mixed Integer Non-linear Programming problems to maximize the modularity therefore providing a non-overlapping partition of the network. A display of the principal research areas and landmark articles that shape the intellectual structure of the waste management problems during the last 30 years is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achillas, C., Vlachokostas, C., Moussiopoulos, N., & Banias, G. (2010). Decision support system for the optimal location of electrical and electronic waste treatment plants: A case study in Greece. Waste Management, 30(5), 870–879.

    Google Scholar 

  • Ahmed, S., Tawarmalani, M., & Sahinidis, N. V. (2004). A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming, 100(2), 355–377.

    Google Scholar 

  • Aras, N., Aksen, D., & Tanugur, A. G. (2008). Locating collection centers for incentive-dependent returns under a pickup policy with capacitated vehicles. European Journal of Operational Research, 191(3), 1223–1240.

    Google Scholar 

  • Belien, J., Boeck, L. D., & Ackere, J. V. (2014). Municipal solid waste collection and management problems: A literature review. Transportation Science, 48(1), 78–102.

    Google Scholar 

  • Bettencourt, L. M. A., & Kaur, J. (2011). Evolution and structure of sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 540–545.

    Google Scholar 

  • Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177.

    Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Google Scholar 

  • Cao, M. F., Huang, G. H., Sun, Y., Xu, Y., & Yao, Y. (2010). Dual inexact fuzzy chance constrained programming for planning waste management systems. Stochastic Environmental Research and Risk Assessment, 24, 1163–1174.

    Google Scholar 

  • Chang, N. B., and Chang, Y. H. (1996). Fuzzy optimal operation of solid waste management systems. In Proceeding of 7th ISWA international congress Yokohama, Japan (vol. 2, pp. 295–296).

  • Chang, N. B., & Davila, E. (2007). Minimax regret optimization analysis for a regional solid waste management system. Waste Management, 27(6), 820–832.

    Google Scholar 

  • Chang, N. B., & Davila, E. (2008). Municipal solid waste characterizations and management strategies for the lower Rio Grande Valley, Texas. Waste Management, 28(5), 776–794.

    Google Scholar 

  • Chang, N. B., Pires, A., & Martinho, G. (2011). Empowering systems analysis for solid waste management: Challenges, trends, and perspectives. Critical Reviews in Environmental Science and Technology, 41(16), 1449–1530.

    Google Scholar 

  • Chen, C. M. (2006). Citespace ii: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Google Scholar 

  • Chen, C. M. (2012). Turning points: The nature of creativity. Berlin: Springer.

    Google Scholar 

  • Chen, H. B., Jiang, W., Yang, Y., & Man, X. (2015). Global trends of municipal solid waste research from 1997 to 2014 using bibliometric analysis. Journal of the Air and Waste Management Association, 65(10), 1161–1170.

    Google Scholar 

  • Chen, M., Kuzmin, K., & Szymanski, B. (2014). Community detection via maximization of modularity and its variants. IEEE Transactions on Computational Social Systems, 1(1), 46–65.

    Google Scholar 

  • Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). Scimat: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630.

    Google Scholar 

  • Davila, E., Chang, N. B., & Diwakaruni, S. (2005). Landfill space consumption dynamics in the Lower Rio Grande Valley by grey integer programming-based games. Journal of Environmental Management, 75(1), 353–365.

    Google Scholar 

  • Ding, Y., & Cronin, B. (2011). Popular and/or prestigious? Measures of scholarly esteem. Information Processing and Management, 47(1), 80–96.

    Google Scholar 

  • Eriksson, O., Reich, M. C., Frostell, B., Björklund, A., Assefa, G., Sundqvist, J.-O., et al. (2005). Municipal solid waste management from a systems perspective. Journal of Cleaner Production, 13(3), 241–252.

    Google Scholar 

  • Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van der Laan, E., Van Nunen, J. A., & Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103(1), 1–17.

    Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports-Review Section of Physics Letters, 486(3–5), 75–174.

    Google Scholar 

  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164.

    Google Scholar 

  • Ghinea, C., & Gavrileseu, M. (2010). Decision support models for solid waste management—An overview. Environmental Engineering and Management Journal, 9(6), 869–880.

    Google Scholar 

  • Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average. Waste Management, 32(2), 287–296.

    Google Scholar 

  • Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626.

    Google Scholar 

  • Guo, P., Huang, G. H., He, L., & Sun, B. W. (2008). Itssip: Interval-parameter two-stage stochastic semi-in nite programming for environmental management under uncertainty. Environmental Modelling and Software, 23(12), 1422–1437.

    Google Scholar 

  • Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for land ll location selection. Springerplus, 5, 30–42.

    Google Scholar 

  • Hokkanen, J., & Salminen, P. (1997). Choosing a solid waste management system using multicriteria decision analysis. European Journal of Operational Research, 98, 19–36.

    Google Scholar 

  • Hsieh, H., & Ho, K. (1993). Management of solid waste disposal system by optimization technique. Journal of Resource Management and Technology, 21(4), 194–201.

    Google Scholar 

  • Huang, G. H., Baetz, B., & Patry, G. (1992). Grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 9, 319–335.

    Google Scholar 

  • Huang, G. H., Baetz, B., & Patry, G. (1993). A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 10, 123–146.

    Google Scholar 

  • Huang, G. H., Baetz, B., & Patry, G. (1995). Grey integer programming: An application to waste management planning under uncertainty. European Journal of Operational Research, 83(3), 594–620.

    Google Scholar 

  • Huang, G. H., Sae-Lim, N., Liu, L., & Chen, Z. (2001). An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning. Environmental Modeling and Assessment, 6(4), 271–283.

    Google Scholar 

  • Iakovou, E., Moussiopoulos, N., Xanthopoulos, A., Achillas, C. H., Michailidis, N., & Chatzipanagioti, M. (2009). Multicriteria matrix: A methodology for end-of-life management. Resources, Conservation and Recycling, 53, 329–339.

    Google Scholar 

  • Jimenez, M., Arenas, M., Bilbao, A., & Rodriguez, M. V. (2007). Linear programming with fuzzy parameters: An interactive method resolution. European Journal of Operational Research, 177(3), 1599–1609.

    Google Scholar 

  • Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.

    Google Scholar 

  • Kara, S. S., & Onut, S. (2010). A stochastic optimization approach for paper recycling reverse logistics network design under uncertainty. International Journal of Environmental Science and Technology, 7(4), 717–730.

    Google Scholar 

  • Karmakar, S., & Mujumdar, P. (2006). Grey fuzzy optimization model for water quality management of a river system. Advances in Water Resources, 29(1088), 1105.

    Google Scholar 

  • Kirkeby, J. T., Bhander, G. S., Birgisdóttir, H., Hansen, T. L., Hauschild, M., & Christensen, T. H. (2006). Environmental assessment of solid waste systems and technologies: EASEWASTE. Waste Management and Research, 24, 3–15.

    Google Scholar 

  • Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373–397.

    Google Scholar 

  • Ko, H. J., & Evans, G. W. (2007). A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Computers & Operations Research, 34(2), 346–366.

    Google Scholar 

  • Korucu, M. K., & Erdagi, B. (2012). A criticism of applications with multi-criteria decision analysis that are used for the site selection for the disposal of municipal solid wastes. Waste Management, 32(12), 2315–2323.

    Google Scholar 

  • Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E., et al. (2014). Review of LCA studies of solid waste management systems—Part i: Lessons learned and perspectives. Waste Management, 34(3), 573–588.

    Google Scholar 

  • Lee, D. H., & Dong, M. (2008). A heuristic approach to logistics network design for end-of-lease computer products recovery. Transport Res E-Log, 44(3), 455–474.

    Google Scholar 

  • Leeuwen, T. V. (2006). The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics, 66(1), 133–154.

    Google Scholar 

  • Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 1–42.

    Google Scholar 

  • Li, Y. P., & Huang, G. H. (2010). Dual-interval fuzzy stochastic programming method for long-term planning of municipal solid waste management. Journal of Computing in Civil Engineering, 24(2), 188–202.

    Google Scholar 

  • Lu, Z. Q., & Bostel, N. (2007). A facility location model for logistics systems including reverse flows: The case of remanufacturing activities. Computers & Operations Research, 34(2), 299–323.

    Google Scholar 

  • Lu, H. W., Huang, G. H., He, L., & Zeng, G. M. (2009). An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control. Journal of Environmental Management, 90(1), 396–409.

    Google Scholar 

  • Maqsood, M., & Huang, G. H. (2003). A two-stage interval-stochastic programming model for waste management under uncertainty. Journal of the Air and Waste Management Association, 53(5), 540–552.

    Google Scholar 

  • Minciardi, R., Paolucci, M., Robba, M., & Sacile, R. (2008). Multi-objective optimization of solid waste flows: Environmentally sustainable strategies for municipalities. Waste Management, 28(11), 2202–2212.

    Google Scholar 

  • Morrissey, A. J., & Browne, J. (2004). Waste management models and their application to sustainable waste management. Waste Management, 24(3), 297–308.

    Google Scholar 

  • Najm, M. A., & El-Fadel, M. (2004). Computer-based interface for an integrated solid waste management optimization model. Environmental Modelling and Software, 19(12), 1151–1164.

    Google Scholar 

  • Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 5–24.

    Google Scholar 

  • Nie, X. H., Huang, G. H., Li, Y. P., & Liu, L. (2007). IFRP: A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty. Journal of Environmental Management, 84(1), 1–11.

    Google Scholar 

  • Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

    Google Scholar 

  • ReVelle, C., Cohon, J., & Shobrys, D. (1991). Simultaneous siting and routing in the disposal of hazardous wastes. Transportation Science, 25, 138–145.

    Google Scholar 

  • Riber, C., Hander, G. S., & Christensen, T. H. (2008). Environmental assessment of waste incineration in a life-cycle-perspective. Waste Management and Research, 26(1), 96–103.

    Google Scholar 

  • Rotta, R. (2008). A multilevel algorithm for modularity graph clustering. PhD thesis, Brandenburgische Technische Universitat Cottbus.

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q. (2007). An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. European Journal of Operational Research, 179(3), 1063–1077.

    Google Scholar 

  • Sener, S., Sener, E., Nas, B., & Karaguzel, R. (2010). Combining AHP with GIS for landfill site selection: A case study in the Lake Beysehir catchment area (Konya, Turkey). Waste Management, 30(11), 2037–2046.

    Google Scholar 

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the Association for Information Science and Technology, 24(4), 265–269.

    Google Scholar 

  • Small, H. (1977). A co-citation model of a scientific specialty: A longitudinal study of collagen research. Social Studies of Science, 7, 139–166.

    Google Scholar 

  • Tan, Q., Huang, G. H., & Cai, Y. P. (2010). Waste management with recourse: An inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints. Journal of Environmental Management, 91(9), 1898–1913.

    Google Scholar 

  • Thelwall, M. (2008). Bibliometrics to webometrics. Journal of Information Science, 34(4), 605–621.

    Google Scholar 

  • Union, E. (2008). Waste and repealing certain directives: 98/ec d. Official Journal of the European Union, L, 312.

    Google Scholar 

  • White, H. D. (2003). Pathfinder networks and author co-citation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423–434.

    Google Scholar 

  • White, P., Franke, M., & Hindle, P. (1995). Integrated solid waste management: A lifecycle inventory. London: Blackie Academic and Professional.

    Google Scholar 

  • Wu, Y. N., Yang, M., Zhang, H. B., Chen, K. F., & Wang, Y. (2016). Optimal site selection of electric vehicle charging stations based on a cloud model and the promethee method. Energies, 9(3), 20–32.

    Google Scholar 

  • Yang, L. J., Silva, J. C., Papageorgiou, L. G., & Tsoka, S. (2016). Community structure detection for directed networks through modularity optimisation. Algorithms, 9(4), 10–23.

    Google Scholar 

  • Yeomans, J. S., & Huang, G. H. (2003). An evolutionary grey, hop, skip, and jump approach: Generating alternative policies for the expansion of waste management facilities. Journal of Environmental Informatics, 1(1), 37–51.

    Google Scholar 

  • Zarei, M., Mansour, S., Kashan, A. H., & Karimi, B. (2010). Designing a reverse logistics network for end-of-life vehicles recovery. Mathematical Problems in Engineering, 2010, 16–31.

    Google Scholar 

  • Zeng, Y., & Trauth, K. M. (2005). Internet-based fuzzy multicriteria decision support system for planning integrated solid waste management. Journal of Environmental Informatics, 6(1), 1–15.

    Google Scholar 

  • Zhang, B. C., Liu, R., Massey, D., & Zhang, L. X. (2005). Collecting the internet as-level topology. ACM Sigcomm Computer Communication Review, 35(1), 53–61.

    Google Scholar 

  • Zhu, Z. P., & ReVelle, C. (1990). A cost allocation method for facilities siting with fixed charge cost functions. Civil Engineering Systems, 7(1), 29–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Masri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argoubi, M., Jammeli, H. & Masri, H. The intellectual structure of the waste management field. Ann Oper Res 294, 655–676 (2020). https://doi.org/10.1007/s10479-020-03570-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03570-3

Keywords

Navigation