Skip to main content
Log in

Operations research methods for estimating the population size of neuron types

  • S.I. : OR in Neuroscience II
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Understanding brain computation requires assembling a complete catalog of its architectural components. Although the brain is organized into several anatomical and functional regions, it is ultimately the neurons in every region that are responsible for cognition and behavior. Thus, classifying neuron types throughout the brain and quantifying the population sizes of distinct classes in different regions is a key subject of research in the neuroscience community. The total number of neurons in the brain has been estimated for multiple species, but the definition and population size of each neuron type are still open questions even in common model organisms: the so called “cell census” problem. We propose a methodology that uses operations research principles to estimate the number of neurons in each type based on available information on their distinguishing properties. Thus, assuming a set of neuron type definitions, we provide a solution to the issue of assessing their relative proportions. Specifically, we present a three-step approach that includes literature search, equation generation, and numerical optimization. Solving computationally the set of equations generated by literature mining yields best estimates or most likely ranges for the number of neurons in each type. While this strategy can be applied towards any neural system, we illustrate its usage on the rodent hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abernethy, J., & Hazan, E. (2015). Faster convex optimization: simulated annealing with an efficient universal barrier. http://proceedings.mlr.press/v48/abernethy16.pdf. Accessed 02 October 2019.

  • Armañanzas, R., & Ascoli, G. A. (2015). Towards the automatic classification of neurons. Trends in Neuroscience,38(5), 307–318.

    Article  Google Scholar 

  • Armstrong, C., Szabadics, J., Tamas, G., & Soltesz, I. (2011). Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward gamma-aminobutyric acidergic modulators of entorhinal-hippocampal interplay. The Journal of Comparative Neurology,519(8), 1476–1491.

    Article  Google Scholar 

  • Ascoli, G. A., & Wheeler, D. W. (2016). In search of a periodic table of the neurons: Axonal-dendritic circuitry as the organizing principle—Patterns of axons and dendrites within distinct anatomical parcels provide the blueprint for circuit-based neuronal classification. BioEssays,38(10), 969–976.

    Article  Google Scholar 

  • Attili, S. M., Silva, M. F. M., Nguyen, T., & Ascoli, G. A. (2019). Cell numbers, distribution, shape, and regional variation throughout the murine hippocampal formation from the adult brain Allen Reference Atlas. Brain Structure and Function,224, 2883–2897.

    Article  Google Scholar 

  • Audet, C., & Dennis, J. E., Jr. (2003). Analysis of generalized pattern searches. SIAM Journal on Optimization,13(3), 889–903.

    Article  Google Scholar 

  • Bartheld, C. S. V. (2001). Comparison of 2-D and 3-D counting: The need for calibration and common sense. Trends in Neurosciences,24(9), 504–506. https://doi.org/10.1016/s0166-2236(00)01960-3.

    Article  Google Scholar 

  • Bayer, S., Yackel, J., & Puri, P. (1982). Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science,216, 890–892.

    Article  Google Scholar 

  • Bezaire, M. J., Raikov, I., Burk, K., Vyas, D., & Soltesz, I. (2016). Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. ELife. https://doi.org/10.7554/eLife.18566.001.

    Article  Google Scholar 

  • Bezaire, M. J., & Soltesz, I. (2013). Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus,23(9), 751–785. https://doi.org/10.1002/hipo.22141.

    Article  Google Scholar 

  • Bhanu, B., & Peng, J. (2000). Adaptive integrated image segmentation and object recognition. IEEE Trans Syst Man Cybern Part C (Appl Rev),30, 427–441.

    Article  Google Scholar 

  • Bota, M., & Swanson, L. W. (2007). The neuron classification problem. Brain Research Reviews,56(1), 79–88.

    Article  Google Scholar 

  • Buckmaster, P. S., & Jongen-Relo, A. L. (1999). Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. Journal of Neuroscience,19(21), 9519–9529.

    Article  Google Scholar 

  • Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming,89(1), 149–185.

    Article  Google Scholar 

  • Calhoun, M. E., Kurth, D., & Phinney, A. L. (1998). Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiology of Aging,19, 599–606.

    Article  Google Scholar 

  • Ceranik, K., Bender, R., Geiger, J. R., Monyer, H., Jonas, P., Frotscher, M., et al. (1997). A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. Journal of Neuroscience,17(14), 5380–5394.

    Article  Google Scholar 

  • Coleman, T. F., & Li, Y. A. (1996). Reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization,6(4), 1040–1058.

    Article  Google Scholar 

  • Conn, A. R., Gould, N. I. M., & Toint, P. (1997). A globally convergent augmented lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds. Mathematics of Computation,66(217), 261–288.

    Article  Google Scholar 

  • Ecker, J. R., Geschwind, D. H., Kriegstein, A. R., Ngai, J., Osten, P., Polioudakis, D., et al. (2017). The BRAIN initiative cell census consortium: Lessons learned toward generating a comprehensive brain cell atlas. Neuron,96, 542–557.

    Article  Google Scholar 

  • Erö, C., Gewaltig, C., Keller, M., & Markram, D. (2018). A cell atlas for the mouse brain. Frontiers in Neuroinformatics. https://doi.org/10.3389/fninf.2018.00084.

    Article  Google Scholar 

  • Fitting, S., Booze, R. M., Hasselrot, U., & Mactutus, C. F. (2009). Dose-dependent longterm effects of Tat in the rat hippocampal formation: A design-based stereological study. Hippocampus. https://doi.org/10.1002/hipo.20648.

    Article  Google Scholar 

  • Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. Cambridge: Academic Press.

    Google Scholar 

  • Grady, M. S., Charleston, J. S., Maris, D., Witgen, B. M., & Lifshitz, J. (2003). Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: Analysis by stereological estimation. Journal of Neurotrauma,20(10), 929–941.

    Article  Google Scholar 

  • Hamilton, D. J., Shepherd, G. M., Martone, M. E., & Ascoli, G. A. (2012). An ontological approach to describing neurons and their relationships. Frontiers in Neuroinformatics. https://doi.org/10.3389/fninf.2012.00015.

    Article  Google Scholar 

  • Hamilton, D. J., White, C. M., Rees, C. L., Wheeler, D. W., & Ascoli, G. A. (2017). Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach. Journal of Pharmaceutical and Biomedical Analysis,144(10), 269–278.

    Article  Google Scholar 

  • Han, Z. S. (1994). Electrophysiological and morphological differentiation of chandelier and basket cells in the rat hippocampal formation: A study combining intracellular recording and intracellular staining with biocytin. Neuroscience Research,19(1), 101–110.

    Article  Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience. https://doi.org/10.3389/neuro.09.031.2009.

    Article  Google Scholar 

  • Herculano-Houzel, S., Bartheld, C. S. V., Miller, D. J., & Kaas, J. H. (2015). How to count cells: The advantages and disadvantages of the isotropic fractionator compared with stereology. Cell and Tissue Research,360(1), 29–42.

    Article  Google Scholar 

  • Herculano-Houzel, S., Mota, B., & Lent, R. (2006). Cellular scaling rules for rodent brains. PNAS,103, 12138–12143.

    Article  Google Scholar 

  • Herculano-Houzel, S., Ribeiro, P., Campos, L., Valotta da Silva, A., Torres, L. B., Catania, K. C., et al. (2011). Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain, Behavior and Evolution,78, 302–314.

    Article  Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics,12(1), 55–67.

    Article  Google Scholar 

  • Hosseini-Sharifabad, M., & Nyengaard, J. R. (2007). Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus. Journal of Neuroscience Methods,162, 206–214.

    Article  Google Scholar 

  • Husmann, K., Lange, A., & Spiegel, E. (2017). The R package optimization: Flexible global optimization with simulated-annealing. Researchgate.net. Accessed 01 August 2019.

  • Insausti, A. M., Megas, M., & Crespo, D. (1998). Hippocampal volume and neuronal number in Ts65Dn mice: A murine model of down syndrome. Neuroscience Letters,253, 175–178.

    Article  Google Scholar 

  • Januszewski, M., Kornfeld, J., Li, P. H., Pope, A., Blakely, T., Lindsey, L., et al. (2018). High-precision automated reconstruction of neurons with flood-filling networks. Nature Methods,15(8), 605–610.

    Article  Google Scholar 

  • Kaae, S. S., Chen, F., Wegener, G., Madsen, T. M., & Nyengaard, J. R. (2012). Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression. Synapse (New York, N. Y.),66, 667–676.

    Article  Google Scholar 

  • Kalai, A. T., & Vempala, S. (2006). Simulated annealing for convex optimization. Mathematics of Operations Research,31(2), 253–266. https://doi.org/10.1287/moor.1060.0194.

    Article  Google Scholar 

  • Keller, D., Meystre, J., Veettil, R. V., Burri, O., Guiet, R., Schurmann, F., et al. (2019). A derived positional mapping of inhibitory subtypes in the somatosensory cortex. Frontiers in Neuroanatomy. https://doi.org/10.3389/fnana.2019.00078.

    Article  Google Scholar 

  • Laarhoven, P. J. M. V., & Aarts, E. H. L. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 77–98). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Classics in applied mathematics. Philadelphia: SIAM.

    Book  Google Scholar 

  • Lister, J. P., Tonkiss, J., Blatt, G. J., Kemper, T. L., Debassio, W. A., Galler, J. R., et al. (2006). Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats: A stereological investigation. Hippocampus,16, 946–958.

    Article  Google Scholar 

  • Lubke, J., Frotscher, M., & Spruston, N. (1998). Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. Journal of Neurophysiology,79(3), 1518–1534.

    Article  Google Scholar 

  • Moradi, K., & Ascoli, G. A. (2019). A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus. https://doi.org/10.1101/632760.

    Article  Google Scholar 

  • More, J. J. (1978). The Levenberg–Marquardt algorithm: Implementation and theory. Lecture Notes in Mathematics Numerical Analysis,45, 105–116. https://doi.org/10.1007/bfb0067700.

    Article  Google Scholar 

  • Morgan, R. J., Santhakumar, V., & Soltesz, I. (2007). Modeling the dentate gyrus. Progress in Brain Research,163, 639–658.

    Article  Google Scholar 

  • Mott, D. D., Turner, D. A., Okazaki, M. M., & Lewis, D. V. (1997). Interneurons of the dentate-hilus border of the rat dentate gyrus: Morphological and electrophysiological heterogeneity. Journal of Neuroscience,17(11), 3990–4005.

    Article  Google Scholar 

  • Mulders, W., West, M., & Slomianka, L. (1998). Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat. Journal of Comparative Neurology,385, 83–94.

    Article  Google Scholar 

  • Mullen, M. (2015). The Stark–Parker algorithm for bounded-variable least squares. https://cran.rproject.org/web/packages/bvls/bvls.pdf. Accessed 01 August 2019.

  • Mullen, M., & van Stokkum, H. M. (2015). The Lawson–Hanson algorithm for non-negative least squares (NNLS). https://cran.r-project.org/web/packages/nnls/nnls.pdf. Accessed 01 August 2019.

  • Murakami, T. C., Mano, T., Saikawa, S., Horiguchi, S. A., Shigeta, D., et al. (2018). A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nature Neuroscience,21, 625–637.

    Article  Google Scholar 

  • Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., et al. (2015). BigNeuron: Large-scale 3D neuron reconstruction from optical microscopy images. Neuron,87(2), 252–256.

    Article  Google Scholar 

  • Peng, H., Roysam, B., & Ascoli, G. A. (2013). Automated image computing reshapes computational neuroscience. BMC Bioinformatics,14, 293.

    Article  Google Scholar 

  • Ramsden, M., Berchtold, N. C., Kesslak, J. P., Cotman, C. W., & Pike, C. J. (2003). Exercise increases the vulnerability of rat hippocampal neurons to kainate lesion. Brain Research,971, 239–244.

    Article  Google Scholar 

  • Rapp, P. R., & Gallagher, M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences of the United States of America,93(18), 9926–9930.

    Article  Google Scholar 

  • Rasmussen, T., Schliemann, T., Sorensen, J. C., Zimmer, J., & West, M. J. (1996). Memory impaired aged rats: No loss of principal hippocampal and subicular neurons. Neurobiology of Aging,17, 143–147.

    Article  Google Scholar 

  • Russ, J. C., & Deho, R. T. (2001). Practical stereology. New York: Kluwer Academic.

    Google Scholar 

  • Shepherd, M., G., Marenco, Luis, Hines, L., M., et al. (2019, February 7). Neuron names: A gene- and property-based name format, with special reference to cortical neurons. Frontiers, https://www.frontiersin.org/articles/10.3389/fnana.2019.00025/full. Accessed 24 October 2019.

  • Sousa, N., Madeira, M. D., & Paula-Barbosa, M. M. (1998). Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Research,794, 199–210.

    Article  Google Scholar 

  • Stark, P. B., & Parker, R. L. (1993). Bounded-variable least-squares: An algorithm and applications. http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/394.pdf. Accessed 01 August 2019.

  • Tasic, B., Yao, Z., Smith, K. A., Graybuck, L., Nguyen, T., Bertagolli, D., et al. (2018). Shared and distinct transcriptomic cell types across neocortical areas. Nature,563(7729), 72–78.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B,58(1), 267–288.

    Google Scholar 

  • Wang, L., Gordon, M. D., & Zhu, J. (2006). Regularized least absolute deviations regression and an effcient algorithm for parameter tuning. IEEE. https://ieeexplore.ieee.org/abstract/document/4053094. Accessed 01 August 2019.

  • West, M. J., Slomianka, L., & Gundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record,231(4), 482–497.

    Article  Google Scholar 

  • Wheeler, D. W., et al. (2015). Hippocampome.org: A knowledge base of neuron types in the rodent hippocampus. Elife,4, 09960.

    Google Scholar 

  • White, C. M., Rees, C. L., Wheeler, D. W., Hamilton, D. J., & Ascoli, G. A. (2019). Molecular expression profiles of morphologically defined hippocampal neuron types: Empirical evidence and relational inferences. Hippocampus. https://doi.org/10.1002/hipo.23165.

    Article  Google Scholar 

  • Williams, P. A., Larimer, P., Gao, Y., & Strowbridge, B. W. (2007). Semilunar granule cells: Glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. Journal of Neuroscience,27(50), 13756–13761.

    Article  Google Scholar 

  • Woodson, W., Nitecka, L., & Ben-Ari, Y. (1989). Organization of the GABAergic system in the rat hippocampal formation: A quantitative immunocytochemical study. The Journal of Comparative Neurology,280(2), 254–271.

    Article  Google Scholar 

  • Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global optimization: The GenSA package. The R Journal,5, 13.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported in parts by Grants R01NS39600 and U01MH114829. The authors are grateful to Drs. Diek Wheeler, Keivan Moradi, and Padmanabhan Seshaiyer for their help and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio A. Ascoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attili, S.M., Mackesey, S.T. & Ascoli, G.A. Operations research methods for estimating the population size of neuron types. Ann Oper Res 289, 33–50 (2020). https://doi.org/10.1007/s10479-020-03542-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03542-7

Keywords

Navigation