Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., et al. (2016). Adaptive automation triggered by EEG-based mental workload index: a passive brain-computer interface application in realistic air traffic control environment. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2016.00539.
Article
Google Scholar
Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis. Dordrecht: Kluwer Academic Publishers.
Book
Google Scholar
Berčík, J., Horská, E., Wang, R. W., & Chen, Y. C. (2016). The impact of parameters of store illumination on food shopper response. Appetite,106, 101–109.
Article
Google Scholar
Binda, P., Pereverzeva, M., & Murray, S. (2014). Pupil size reflects the focus of feature-based attention. Journal of Neurophysiology. https://doi.org/10.1152/jn.00FLF502.2014.
Article
Google Scholar
Choi, Y., Park, J., & Shin, D. (2017). A semi-supervised inattention detection method using biological signal. Annals of Operations Research,258(1), 59–78. https://doi.org/10.1007/s10479-017-2406-6.
Article
Google Scholar
Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I. Journal of Personality and Social Psychology,58(2), 330.
Article
Google Scholar
de Almeida, A., Cavalcante, C., Alencar, M., Ferreira, R., de Almeida-Filho, A., & Garcez, T. (2015). Multicriteria and multi-objective models for risk, reliability and maintenance decision analysis (Vol. 231)., International series in operations research and management science New York: Springer.
Book
Google Scholar
de Almeida, A. & Roselli, L. (2017). Visualization for decision support in FITradeoff method: Exploring its evaluation with cognitive neuroscience. In I. Linden, C. Liu & C. Colot (Eds.), Decision Support Systems VII. Data, Information and Knowledge Visualization in Decision Support Systems. LNBIP 282 (pp. 61–73). https://doi.org/10.1007/978-3-319-57487-5_5.
Google Scholar
de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research,250(1), 179–191. https://doi.org/10.1016/j.ejor.2015.08.058.
Article
Google Scholar
Dimoka, A., Davis, F. D., Gupta, A., Pavlou, P. A., Banker, R. D., Dennis, A. R., et al. (2012). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Quarterly. https://doi.org/10.2307/41703475.
Article
Google Scholar
Fiedler, S., & Glöckner, A. (2012). The dynamics of decision making in risky choice: an eye-tracking analysis. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2012.00335.
Article
Google Scholar
Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.
Book
Google Scholar
Fischer, N. L., Peres, R., & Fiorani, M. (2018). Frontal alpha asymmetry and theta oscillations associated with information sharing intention. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2018.00166.
Article
Google Scholar
Hakimi, S., & Hare, T. A. (2015). Enhanced neural responses to imagined primary rewards predict reduced monetary temporal discounting. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.1863-15.2015.
Article
Google Scholar
Hammerschmidt, W., Kagan, I., Kulke, L., & Schacht, A. (2018). Implicit reward associations impact face processing: Time-resolved evidence from event-related brain potentials and pupil dilations. Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.06.055.
Article
Google Scholar
Hermens, D. F., Soei, E. X., Clarke, S. D., Kohn, M. R., Gordon, E., & Williams, L. M. (2005). Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder. Pediatric Neurology. https://doi.org/10.1016/j.pediatrneurol.2004.11.009.
Article
Google Scholar
Hügelschäfer, S., & Achtziger, A. (2017). Reinforcement, rationality, and intentions: How robust is automatic reinforcement learning in economic decision making? Journal of Behavioral Decision Making.,20(4), 913–932. https://doi.org/10.1002/bdm.2008.
Article
Google Scholar
Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives—Preferences, and value tradeoffs. New York: Wiley.
Google Scholar
Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2012.12.095.
Article
Google Scholar
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Review. https://doi.org/10.1016/s0165-0173(98)00056-3.
Article
Google Scholar
Kropat, E., Tikidji-Hamburyan, R. A., & Weber, G. W. (2017). Operations research in neuroscience. Annals of Operations Research,258(1), 1–4. https://doi.org/10.1007/s10479-017-2633-x.
Article
Google Scholar
Lieberman, M. D. (2007). Social Cognitive Neuroscience: a review of core process. Annual Review Psychology. https://doi.org/10.1146/annurev.psych.58.110405.085654.
Article
Google Scholar
Lin, C. T., Chuang, C. H., Kerick, S., Mullen, T., Jung, T. P., Ko, L. W., et al. (2016). Mind-wandering tends to occur under low perceptual demands during driving. Scientific Reports. https://doi.org/10.1038/srep21353.
Article
Google Scholar
Müller-Putz, G. R., Riedl, R., & Wriessnegger, S. C. (2015). Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. CAIS,37, 46.
Article
Google Scholar
Özmen, A. (2016). Robust optimization of spline models and complex regulatory networks: Theory methods and applications. Berlin: Springer. https://doi.org/10.1007/978-3-319-30800-5.
Book
Google Scholar
Papesh, M. H., & Goldinger, S. D. (2014). Pupil dilation reveals cognitive effort, and cognitive effortless. International Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2014.08.626.
Article
Google Scholar
Park, S. Q., Kahnt, T., Rieskamp, J., & Heekeren, H. R. (2011). Neurobiology of value integration: when value impacts valuation. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.4973-10.2011.
Article
Google Scholar
Pineda, P. J. G., Liou, J. J., Hsu, C. C., & Chuang, Y. C. (2018). An integrated MCDM model for improving airline operational and financial performance. Journal of Air Transport Management,68, 103–117.
Article
Google Scholar
Poudel, G. R., Bhattarai, A., Dickinson, D. L., & Drummond, S. (2017). Neural correlates of decision-making during a Bayesian choice task. NeuroReport. https://doi.org/10.1097/WNR.0000000000000730.
Article
Google Scholar
Ramsøy, T. Z., Skov, M., Christensen, M. K., & Stahlhut, C. (2018). Frontal brain asymmetry and willingness to pay. Frontiers in neuroscience,12, 138.
Article
Google Scholar
Rasoulzadeh, V., Erkus, E. C., Yogurt, T. A., Ulusoy, I., & Zergeroğlu, S. A. (2017). A comparative stationarity analysis of EEG signals. Annals of Operations Research,258(1), 133–157. https://doi.org/10.1007/s10479-016-2187-3.
Article
Google Scholar
Reznik, S. J., & Allen, J. J. B. (2018). Frontal asymmetry as a mediator and moderator of emotion: an updated review. Psychophysiology. https://doi.org/10.1111/psyp.12965.
Article
Google Scholar
Roselli, L. R. P., Frej, E. A. & de Almeida, A. T. (2018). Neuroscience experiment for graphical visualization in the FITradeoff decision support system. In Y. Chen., G. Kersten., R. Vetschera., & H. Xu (Eds.), Group Decision and Negotiation in an Uncertain World. GDN 2018. Lecture Notes in Business Information Processing (Vol. 315).
Savku, E., & Weber, G.-W. (2018). A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. Journal of Optimization Theory and Applications,179(2), 696–721. https://doi.org/10.1007/s10957-017-1159-3.
Article
Google Scholar
Shen, K. Y., Hu, S. K., & Tzeng, G. H. (2017). Financial modeling and improvement planning for the life insurance industry by using a rough knowledge based hybrid MCDM model. Information Sciences,375, 296–313. https://doi.org/10.1016/j.ins.2016.09.055.
Article
Google Scholar
Van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-018-1432-y.
Article
Google Scholar
Wang, L., Chu, J., & Wu, J. (2007). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2006.08.005.
Article
Google Scholar
Wascher, E., Rasch, B., Sänger, J., Hoffmann, S., Schneider, D., Rinkenauer, G., et al. (2014). Frontal theta activity reflects distinct aspects of mental fatigue. Biological Psychology. https://doi.org/10.1016/j.biopsycho.2013.11.010.
Article
Google Scholar
Weber, M., & Borcherding, K. (1993). Behavioral influences on weight judgments in multi-attribute decision making. European Journal of Operational Research. https://doi.org/10.1016/0377-2217(93)90318-H.
Article
Google Scholar
Zolfani, S., Aghdaie, M., Derakhti, A., Zavadskas, E., & Varzandeh, M. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2013.06.040.
Article
Google Scholar