Neuroscience experiment applied to investigate decision-maker behavior in the tradeoff elicitation procedure

Abstract

The Tradeoff Elicitation Procedure is a Multi-Criteria Decision Making/Aiding method which is responsible for eliciting scaling constants and presents a robust axiomatic structure. As to its axiomatic structure, this procedure requires the decision-maker to identify the exact indifference point which induces a large number of inconsistencies in the process. In order to evaluate Decision Maker behavior in the Tradeoff elicitation and explore inconsistency in this process, a Neuroscience experiment was conducted using neuro tools, such as an Eye Tracking and an Electroencephalography (EEG). The experiment was applied in a sample of 52 management engineering students. After the data were collected, analyses were developed in order to suggest decision-makers’ behavior in the steps of this procedure. In summary, the responses of the pupils are increased during the process indicating a cognitive effort, and EEG data confirmed this result considering frontal alpha asymmetry and theta power in the frontal electrodes as variables for analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., et al. (2016). Adaptive automation triggered by EEG-based mental workload index: a passive brain-computer interface application in realistic air traffic control environment. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2016.00539.

    Article  Google Scholar 

  2. Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  3. Berčík, J., Horská, E., Wang, R. W., & Chen, Y. C. (2016). The impact of parameters of store illumination on food shopper response. Appetite,106, 101–109.

    Article  Google Scholar 

  4. Binda, P., Pereverzeva, M., & Murray, S. (2014). Pupil size reflects the focus of feature-based attention. Journal of Neurophysiology. https://doi.org/10.1152/jn.00FLF502.2014.

    Article  Google Scholar 

  5. Choi, Y., Park, J., & Shin, D. (2017). A semi-supervised inattention detection method using biological signal. Annals of Operations Research,258(1), 59–78. https://doi.org/10.1007/s10479-017-2406-6.

    Article  Google Scholar 

  6. Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I. Journal of Personality and Social Psychology,58(2), 330.

    Article  Google Scholar 

  7. de Almeida, A., Cavalcante, C., Alencar, M., Ferreira, R., de Almeida-Filho, A., & Garcez, T. (2015). Multicriteria and multi-objective models for risk, reliability and maintenance decision analysis (Vol. 231)., International series in operations research and management science New York: Springer.

    Google Scholar 

  8. de Almeida, A. & Roselli, L. (2017). Visualization for decision support in FITradeoff method: Exploring its evaluation with cognitive neuroscience. In I. Linden, C. Liu & C. Colot (Eds.), Decision Support Systems VII. Data, Information and Knowledge Visualization in Decision Support Systems. LNBIP 282 (pp. 61–73). https://doi.org/10.1007/978-3-319-57487-5_5.

    Google Scholar 

  9. de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research,250(1), 179–191. https://doi.org/10.1016/j.ejor.2015.08.058.

    Article  Google Scholar 

  10. Dimoka, A., Davis, F. D., Gupta, A., Pavlou, P. A., Banker, R. D., Dennis, A. R., et al. (2012). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Quarterly. https://doi.org/10.2307/41703475.

    Article  Google Scholar 

  11. Fiedler, S., & Glöckner, A. (2012). The dynamics of decision making in risky choice: an eye-tracking analysis. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2012.00335.

    Article  Google Scholar 

  12. Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.

    Google Scholar 

  13. Fischer, N. L., Peres, R., & Fiorani, M. (2018). Frontal alpha asymmetry and theta oscillations associated with information sharing intention. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2018.00166.

    Article  Google Scholar 

  14. Hakimi, S., & Hare, T. A. (2015). Enhanced neural responses to imagined primary rewards predict reduced monetary temporal discounting. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.1863-15.2015.

    Article  Google Scholar 

  15. Hammerschmidt, W., Kagan, I., Kulke, L., & Schacht, A. (2018). Implicit reward associations impact face processing: Time-resolved evidence from event-related brain potentials and pupil dilations. Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.06.055.

    Article  Google Scholar 

  16. Hermens, D. F., Soei, E. X., Clarke, S. D., Kohn, M. R., Gordon, E., & Williams, L. M. (2005). Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder. Pediatric Neurology. https://doi.org/10.1016/j.pediatrneurol.2004.11.009.

    Article  Google Scholar 

  17. Hügelschäfer, S., & Achtziger, A. (2017). Reinforcement, rationality, and intentions: How robust is automatic reinforcement learning in economic decision making? Journal of Behavioral Decision Making.,20(4), 913–932. https://doi.org/10.1002/bdm.2008.

    Article  Google Scholar 

  18. Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives—Preferences, and value tradeoffs. New York: Wiley.

    Google Scholar 

  19. Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2012.12.095.

    Article  Google Scholar 

  20. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Review. https://doi.org/10.1016/s0165-0173(98)00056-3.

    Article  Google Scholar 

  21. Kropat, E., Tikidji-Hamburyan, R. A., & Weber, G. W. (2017). Operations research in neuroscience. Annals of Operations Research,258(1), 1–4. https://doi.org/10.1007/s10479-017-2633-x.

    Article  Google Scholar 

  22. Lieberman, M. D. (2007). Social Cognitive Neuroscience: a review of core process. Annual Review Psychology. https://doi.org/10.1146/annurev.psych.58.110405.085654.

    Article  Google Scholar 

  23. Lin, C. T., Chuang, C. H., Kerick, S., Mullen, T., Jung, T. P., Ko, L. W., et al. (2016). Mind-wandering tends to occur under low perceptual demands during driving. Scientific Reports. https://doi.org/10.1038/srep21353.

    Article  Google Scholar 

  24. Müller-Putz, G. R., Riedl, R., & Wriessnegger, S. C. (2015). Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. CAIS,37, 46.

    Article  Google Scholar 

  25. Özmen, A. (2016). Robust optimization of spline models and complex regulatory networks: Theory methods and applications. Berlin: Springer. https://doi.org/10.1007/978-3-319-30800-5.

    Google Scholar 

  26. Papesh, M. H., & Goldinger, S. D. (2014). Pupil dilation reveals cognitive effort, and cognitive effortless. International Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2014.08.626.

    Article  Google Scholar 

  27. Park, S. Q., Kahnt, T., Rieskamp, J., & Heekeren, H. R. (2011). Neurobiology of value integration: when value impacts valuation. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.4973-10.2011.

    Article  Google Scholar 

  28. Pineda, P. J. G., Liou, J. J., Hsu, C. C., & Chuang, Y. C. (2018). An integrated MCDM model for improving airline operational and financial performance. Journal of Air Transport Management,68, 103–117.

    Article  Google Scholar 

  29. Poudel, G. R., Bhattarai, A., Dickinson, D. L., & Drummond, S. (2017). Neural correlates of decision-making during a Bayesian choice task. NeuroReport. https://doi.org/10.1097/WNR.0000000000000730.

    Article  Google Scholar 

  30. Ramsøy, T. Z., Skov, M., Christensen, M. K., & Stahlhut, C. (2018). Frontal brain asymmetry and willingness to pay. Frontiers in neuroscience,12, 138.

    Article  Google Scholar 

  31. Rasoulzadeh, V., Erkus, E. C., Yogurt, T. A., Ulusoy, I., & Zergeroğlu, S. A. (2017). A comparative stationarity analysis of EEG signals. Annals of Operations Research,258(1), 133–157. https://doi.org/10.1007/s10479-016-2187-3.

    Article  Google Scholar 

  32. Reznik, S. J., & Allen, J. J. B. (2018). Frontal asymmetry as a mediator and moderator of emotion: an updated review. Psychophysiology. https://doi.org/10.1111/psyp.12965.

    Article  Google Scholar 

  33. Roselli, L. R. P., Frej, E. A. & de Almeida, A. T. (2018). Neuroscience experiment for graphical visualization in the FITradeoff decision support system. In Y. Chen., G. Kersten., R. Vetschera., & H. Xu (Eds.), Group Decision and Negotiation in an Uncertain World. GDN 2018. Lecture Notes in Business Information Processing (Vol. 315).

  34. Savku, E., & Weber, G.-W. (2018). A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. Journal of Optimization Theory and Applications,179(2), 696–721. https://doi.org/10.1007/s10957-017-1159-3.

    Article  Google Scholar 

  35. Shen, K. Y., Hu, S. K., & Tzeng, G. H. (2017). Financial modeling and improvement planning for the life insurance industry by using a rough knowledge based hybrid MCDM model. Information Sciences,375, 296–313. https://doi.org/10.1016/j.ins.2016.09.055.

    Article  Google Scholar 

  36. Van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-018-1432-y.

    Article  Google Scholar 

  37. Wang, L., Chu, J., & Wu, J. (2007). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2006.08.005.

    Article  Google Scholar 

  38. Wascher, E., Rasch, B., Sänger, J., Hoffmann, S., Schneider, D., Rinkenauer, G., et al. (2014). Frontal theta activity reflects distinct aspects of mental fatigue. Biological Psychology. https://doi.org/10.1016/j.biopsycho.2013.11.010.

    Article  Google Scholar 

  39. Weber, M., & Borcherding, K. (1993). Behavioral influences on weight judgments in multi-attribute decision making. European Journal of Operational Research. https://doi.org/10.1016/0377-2217(93)90318-H.

    Article  Google Scholar 

  40. Zolfani, S., Aghdaie, M., Derakhti, A., Zavadskas, E., & Varzandeh, M. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2013.06.040.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially sponsored by the Coordination for the Improvements of Higher Education Personnel—Brazil (CAPES) and the Brazilian Research Council (CNPq) for which the authors are most grateful.

Funding

This study was financed in part by the Coordination for the Improvements of Higher Education Personnel—Brazil (CAPES) and the Brazilian Research Council (CNPq).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danielle Costa Morais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roselli, L.R.P., Pereira, L.S., da Silva, A.L.C.L. et al. Neuroscience experiment applied to investigate decision-maker behavior in the tradeoff elicitation procedure. Ann Oper Res 289, 67–84 (2020). https://doi.org/10.1007/s10479-019-03394-w

Download citation

Keywords

  • Decision neuroscience
  • MCDM/A
  • Tradeoff elicitation procedure
  • Eye tracking
  • Electroencephalography
  • EEG