Skip to main content
Log in

Managing premium wines using an \((s - 1,s)\) inventory policy: a heuristic solution approach

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Operations research models are increasingly being used to support decision making in the wine industry. However, they have not yet been used to support inventory management decisions. In this paper, we develop a heuristic procedure for managing the stock of premium wines motivated by the operations of a small export-focused winery we worked with. Following an \((s-1,s)\) inventory policy, we assume that the decision maker aims to minimize the steady-state expected values of work in process, overage, and underage costs. The developed heuristic is as follows. First, we approximate the dynamics of the labeling process by a group scheduling policy to obtain the mean delays for each labeled product. Then, we address the problem of setting the inventory positions for the whole product portfolio by solving one newsvendor-type problem for each end-product. We provide some theoretical insights, a numerical example, and we analyze the accuracy of our procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alt, F. L. (1962). Safety levels in military inventory management. Operations Research, 10(6), 786–794.

    Article  Google Scholar 

  • Aronis, K. P., Magou, I., Dekker, R., & Tagaras, G. (2004). Inventory control of spare parts using a bayesian approach: A case study. European Journal of Operational Research, 154(3), 730–739.

    Article  Google Scholar 

  • Basso, F., & Varas, M. (2017). A mip formulation and a heuristic solution approach for the bottling scheduling problem in the wine industry. Computers & Industrial Engineering, 105, 136–145.

    Article  Google Scholar 

  • Basso, F., Guajardo, M., & Varas, M. (2019). Collaborative job scheduling in the wine bottling process. Omega. https://doi.org/10.1016/j.omega.2018.12.010.

  • Basten, R. J., Van der Heijden, M. C., Schutten, J. M., & Kutanoglu, E. (2015). An approximate approach for the joint problem of level of repair analysis and spare parts stocking. Annals of Operations Research, 224(1), 121–145.

    Article  Google Scholar 

  • Bean, W. L., Joubert, J. W., & Luhandjula, M. (2016). Inventory management under uncertainty: A military application. Computers & Industrial Engineering, 96, 96–107.

    Article  Google Scholar 

  • Benjaafar, S., & Sheikhzadeh, M. (1997). Scheduling policies, batch sizes, and manufacturing lead times. IIE Transactions, 29(2), 159–166.

    Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Bertsimas, D., & Van Ryzin, G. (1989). The dynamic traveling repairman problem. Tech. Rep. 3036-89-MS, Sloan School of Management, Massachusetts Institute of Technology

  • Bjørndal, T., Herrero, I., Newman, A., Romero, C., & Weintraub, A. (2012). Operations research in the natural resource industry. International Transactions in Operational Research, 19(1–2), 39–62.

    Article  Google Scholar 

  • Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200(1), 245–252.

    Article  Google Scholar 

  • Boxma, O. J. (1989). Workloads and waiting times in single-server systems with multiple customer classes. Queueing Systems, 5(1–3), 185–214.

    Article  Google Scholar 

  • Cakici, E., Jia, J., Yu, P., Mason, S. J., Richard Cassady, C., Pohl, L., et al. (2006). Cellar tank piping network analysis at e. & j. gallo winery. Journal of Wine Research, 17(3), 145–160.

    Article  Google Scholar 

  • Choi, K. P. (1994). On the medians of gamma distributions and an equation of ramanujan. Proceedings of the American Mathematical Society, 121(1), 245–251.

    Article  Google Scholar 

  • Cholette, S. (2007). A novel problem for a vintage technique: using mixed-integer programming to match wineries and distributors. Interfaces, 37(3), 231–239.

    Article  Google Scholar 

  • Cholette, S. (2009). Mitigating demand uncertainty across a winery’s sales channels through postponement. International Journal of Production Research, 47(13), 3587–3609.

    Article  Google Scholar 

  • Cooper, R., & Murray, G. (1969). Queues served in cyclic order. Bell Labs Technical Journal, 48(3), 675–689.

    Article  Google Scholar 

  • Costantino, F., Di Gravio, G., Patriarca, R., & Petrella, L. (2018). Spare parts management for irregular demand items. Omega, 81, 57–66.

    Article  Google Scholar 

  • Ewing, P.L. (2002). A systems approach to optimize a multi-echelon repairable item inventory system with multiple classes of service. Ph.D. thesis, Colorado School of Mines

  • Feeney, G. J., & Sherbrooke, C. C. (1966). The (s-1, s) inventory policy under compound poisson demand. Management Science, 12(5), 391–411.

    Article  Google Scholar 

  • Ferguson, M. J., & Aminetzah, Y. J. (1985). Exact results for nonsymmetric token ring systems. IEEE Transactions on Communications, 33(3), 223–231.

    Article  Google Scholar 

  • Ferrer, J. C., Mac Cawley, A., Maturana, S., Toloza, S., & Vera, J. (2008). An optimization approach for scheduling wine grape harvest operations. International Journal of Production Economics, 112(2), 985–999.

    Article  Google Scholar 

  • Fritzsche, R. (2012). Cost adjustment for single item pooling models using a dynamic failure rate: A calculation for the aircraft industry. Transportation Research Part E: Logistics and Transportation Review, 48(6), 1065–1079.

    Article  Google Scholar 

  • Fuhrmann, S., & Cooper, R. (1985). Stochastic decompositions in the $M/G/1$ queue with generalized vacations. Operations Research, 33(5), 1117–1129. https://doi.org/10.1287/opre.33.5.1117.

    Article  Google Scholar 

  • Garcia, F. A., Marchetta, M. G., Camargo, M., Morel, L., & Forradellas, R. Q. (2012). A framework for measuring logistics performance in the wine industry. International Journal of Production Economics, 135(1), 284–298.

    Article  Google Scholar 

  • Gendreau, M., & Potvin, J. Y. (2010). Handbook of metaheuristics (Vol. 2). Berlin: Springer.

    Book  Google Scholar 

  • Gholamian, M., & Heydari, M. (2017). An inventory model with metric approach in location-routing-inventory problem. Advances in Production Engineering & Management, 12(2), 115.

    Article  Google Scholar 

  • Gomes, E. G., et al. (2015). Improving agricultural economic efficiency in Brazil. International Transactions in Operational Research, 22(2), 329–337.

    Article  Google Scholar 

  • Gross, D., & Harris, C. M. (1971). On one-for-one-ordering inventory policies with state-dependent leadtimes. Operations, 19(3), 735–760.

    Article  Google Scholar 

  • Gu, J., Zhang, G., & Li, K. W. (2015). Efficient aircraft spare parts inventory management under demand uncertainty. Journal of Air Transport Management, 42, 101–109.

    Article  Google Scholar 

  • Guajardo, M., Rönnqvist, M., Halvorsen, A. M., & Kallevik, S. I. (2015). Inventory management of spare parts in an energy company. Journal of the Operational Research Society, 66(2), 331–341.

    Article  Google Scholar 

  • Higa, I., Feyerherm, A. M., & Machado, A. L. (1975). Waiting time in an (s- 1, s) inventory system. Operations Research, 23(4), 674–680.

    Article  Google Scholar 

  • Hu, Q., Boylan, J. E., Chen, H., & Labib, A. (2018). Or in spare parts management: A review. European Journal of Operational Research, 266(2), 395–414.

    Article  Google Scholar 

  • Iskandar, B. P., & Husniah, H. (2017). Optimal preventive maintenance for a two dimensional lease contract. Computers & Industrial Engineering, 113, 693–703.

    Article  Google Scholar 

  • Jain, A., Moinzadeh, K., & Zhou, Y. P. (2012). A single-supplier, multiple-retailer model with single-season, multiple-ordering opportunities, and fixed ordering cost. Operations Research, 60(5), 1098–1110.

    Article  Google Scholar 

  • Kian, R., Bektaş, T., & Ouelhadj, D. (2019). Optimal spare parts management for vessel maintenance scheduling. Annals of Operations Research, 272(1), 323–353. https://doi.org/10.1007/s10479-018-2907-y.

    Article  Google Scholar 

  • Kong, J., & Rönnqvist, M. (2014). Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. International Transactions in Operational Research, 21(5), 703–735.

    Article  Google Scholar 

  • Mesquita, M., Murta, A. G., Paias, A., & Wise, L. (2017). A metaheuristic approach to fisheries survey route planning. International Transactions in Operational Research, 24(3), 439–464.

    Article  Google Scholar 

  • Moccia, L. (2013). Operational research in the wine supply chain. INFOR: Information Systems and Operational Research, 51(2), 53–63.

    Google Scholar 

  • Moinzadeh, K., & Schmidt, C. P. (1991). An (s- 1, s) inventory system with emergency orders. Operations Research, 39(2), 308–321.

    Article  Google Scholar 

  • Moreno, E., Rezakhah, M., Newman, A., & Ferreira, F. (2017). Linear models for stockpiling in open-pit mine production scheduling problems. European Journal of Operational Research, 260(1), 212–221.

    Article  Google Scholar 

  • Muckstadt, J. A., & Sapra, A. (2010). Background concepts: An introduction to the (s–1, s) policy under Poisson demand (pp. 185–210). New York: Springer. https://doi.org/10.1007/978-0-387-68948-7_7.

    Book  Google Scholar 

  • Palm, C. (1938). Analysis of the erlang traffic formula for busy-signal arrangements. Ericsson Technics, 5(9), 39–58.

    Google Scholar 

  • Palmowski, Z., & Sidorowicz, A. (2018). Note on dynamic programming optimization for assigning pressing tanks at wineries. arXiv preprint arXiv:1811.00469

  • Pegden, C. D. (2007). Simio: A new simulation system based on intelligent objects. In: Proceedings of the 39th Conference on Winter Simulation: 40 Years! The Best is Yet to Come, IEEE Press, pp 2293–2300

  • Petti, L., Raggi, A., De Camillis, C., Matteucci, P., Sára, B., & Pagliuca, G. (2006). Life cycle approach in an organic wine-making firm: An italian case-study. In: Proceedings Fifth Australian Conference on Life Cycle Assessment, Melbourne, Australia, pp 22–24

  • Qin, Y., Wang, R., Vakharia, A. J., Chen, Y., & Seref, M. M. (2011). The newsvendor problem: Review and directions for future research. European Journal of Operational Research, 213(2), 361–374.

    Article  Google Scholar 

  • Rose, M. (1972). The (s- 1, s) inventory model with arbitrary back-ordered demand and constant delivery times. Operations Research, 20(5), 1020–1032.

    Article  Google Scholar 

  • Ross, S. M., et al. (1996). Stochastic processes (Vol. 2). New York: Wiley.

    Google Scholar 

  • Rossi, R., Prestwich, S., Tarim, S. A., & Hnich, B. (2014). Confidence-based optimisation for the newsvendor problem under binomial, Poisson and exponential demand. European Journal of Operational Research, 239(3), 674–684. https://doi.org/10.1016/j.ejor.2014.06.007.

    Article  Google Scholar 

  • Ruan, M., Luo, Y., & Li, H. (2014). Configuration model of partial repairable spares under batch ordering policy based on inventory state. Chinese Journal of Aeronautics, 27(3), 558–567.

    Article  Google Scholar 

  • Rugani, B., Vázquez-Rowe, I., Benedetto, G., & Benetto, E. (2013). A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. Journal of Cleaner Production, 54, 61–77.

    Article  Google Scholar 

  • Schmidt, C. P., & Nahmias, S. (1985). (s- 1, s) policies for perishable inventory. Management Science, 31(6), 719–728.

    Article  Google Scholar 

  • Schultz, C. R. (1990). On the optimality of the (s1, s) policy. Naval Research Logistics (NRL), 37(5), 715–723.

    Article  Google Scholar 

  • Sherbrooke, C. C. (1968). Metric: A multi-echelon technique for recoverable item control. Operations Research, 16(1), 122–141.

    Article  Google Scholar 

  • Smith, S. A. (1977). Optimal inventories for an (s- 1, s) system with no backorders. Management Science, 23(5), 522–528.

    Article  Google Scholar 

  • Song, J. S. (1994). The effect of leadtime uncertainty in a simple stochastic inventory model. Management Science, 40(5), 603–613.

    Article  Google Scholar 

  • Takagi, H. (1988). Queuing analysis of polling models. ACM Computing Surveys, 20(1), 5–28.

    Article  Google Scholar 

  • Ting, S., Tse, Y., Ho, G., Chung, S., & Pang, G. (2014). Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry. International Journal of Production Economics, 152, 200–209.

    Article  Google Scholar 

  • Ui, T. (2006). A note on discrete convexity and local optimality. Japan Journal of Industrial and Applied Mathematics, 23(1), 21–29.

    Article  Google Scholar 

  • Varas, M. (2016). Managing uncertainty in agroforestry problems: Applications of operation research models and methodologies in the wine and forestry industries. Ph.D. thesis, Pontificia Universidad Católica de Chile

  • Varas, M., Maturana, S., Cholette, S., Cawley, A. M., & Basso, F. (2018). Assessing the benefits of labelling postponement in an export-focused winery. International Journal of Production Research, 56(12), 4132–4151. https://doi.org/10.1080/00207543.2018.1431415.

    Article  Google Scholar 

  • Varsei, M., & Polyakovskiy, S. (2017). Sustainable supply chain network design: A case of the wine industry in australia. Omega, 66, 236–247.

    Article  Google Scholar 

  • Weintraub, A., & Romero, C. (2006). Operations research models and the management of agricultural and forestry resources: A review and comparison. Interfaces, 36(5), 446–457.

    Article  Google Scholar 

  • Winands, E. M. M., Adan, I. J. B. F., & Van Houtum, G. J. (2006). Mean value analysis for polling systems. Queueing Systems, 54(1), 35–44. https://doi.org/10.1007/s11134-006-7898-8.

    Article  Google Scholar 

  • Yüceer, Ü. (2002). Discrete convexity: Convexity for functions defined on discrete spaces. Discrete Applied Mathematics, 119(3), 297–304.

    Article  Google Scholar 

  • Zorn, W. L., Deckro, R. F., & Lehmkuhl, L. J. (1999). Modeling diminishing marginal returns in ahierarchical inventory system of reparable spare parts. Annals of Operations Research, 91, 319–337.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank the two reviewers and the editor for their valuable suggestions that allowed us to considerably improve a preliminary version of this work. We also gratefully acknowledge financial support from FONDECYT (under Grant 1150882) and from the Complex Engineering Systems Institute, ISCI (Grant CONICYT FB0816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Varas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of Theorem 4, part 1

Let consider the concept of stochastic ordering. See Ross et al. (1996, Chapter 9), for further reference. It is said that a random variable X is stochastically larger than a random variable Y, denoted by \(X\ge _{st}Y\) if (20) holds.

$$\begin{aligned} P\{X\ge x\} \ge P\{Y\ge x\}, \quad \forall x \in \text {Support}\left( X\right) \cap \text {Support}\left( Y\right) \end{aligned}$$
(20)

For the newsvendor problem, Song (1994) proves that a stochastically larger demand implies a non-lower optimal stock level. Moreover, Ross et al. (1996) show that a Poisson random variable is stochastically increasing in its mean. Therefore, if \(\lambda _{i}\tau _i < \lambda _{j}\tau _j\), then, \(X_{j} \ge _{st} X_{i}\), and thus \(s_{i}^{*} \le s_{j}^{*}\). \(\square \)

Proof of Theorem 4, part 2

First, we need to state some properties of the newsvendor problem under Poisson demand (Lemmas 12 and 3). Let \(h^*(\lambda )\): \({\mathbb {R}}^+\)\(\rightarrow \)\({\mathbb {R}}^+\) be defined as,

$$\begin{aligned} h^*(\lambda ) = \min _{s \in {\mathbb {Z}}^+} f(s,\lambda ) = \min _{s \in {\mathbb {Z}}^+} C_{I}\sum _{x=0}^{s}(s-x)p(x,\lambda ) + C_{B}\sum _{x=s}^{\infty }(x-s)p(x,\lambda ) \end{aligned}$$
(21)

where \(p(x,\lambda )=e^{-\lambda }\frac{{\lambda ^x }}{{x!}}\). Hence, \(h^*(\lambda )\) is the minimum expected cost, in the newsvendor problem context, if the demand follows a Poisson distribution with parameter \(\lambda \). We first restate the following lemma by Jain et al. (2012). \(\square \)

Lemma 1

(Jain et al. (2012)) Let \(s^{*}(\lambda )=\arg \min _{s \in {\mathbb {Z}}^+}f(s,\lambda )\). Then, for each compact and not empty subset of \({\mathbb {R}}^+\) of the form \({\mathbb {S}}({\bar{\lambda }}) = \{x \in {\mathbb {R}}^+ : 0 \le x \le {\bar{\lambda }}\}\), with \({\bar{\lambda }} > -\ln (\epsilon )\), there exists a partition of \({\mathbb {S}}\left( \bar{\lambda } \right) = \displaystyle \cup _{l=0}^{{\bar{s}}-1}[\lambda _{l-1},\lambda _{l}[ \ \cup \ [\lambda _{{\bar{s}} -1},\lambda _{{\bar{s}}}]\), with \(\lambda _{-1} = 0\) and \(\lambda _{{\bar{s}}} = {\bar{\lambda }}\), such that, \(s^{*}(\lambda )=l\) on \([\lambda _{l-1},\lambda _{l}[\), \(\forall \ 0 \le l <{\bar{s}}\), \(s^{*}(\lambda ) = {\bar{s}}\) on \([\lambda _{{\bar{s}}-1},\lambda _{{\bar{s}}}]\), where \(\lambda _{l}\) is the unique root of the transcendental equation,

$$\begin{aligned} t_{l}(\lambda _{l}) = \sum _{i=0}^{l}e^{ - \lambda _{l}}\frac{{\lambda _{l}^i }}{{i!}}-\epsilon =0 \end{aligned}$$
(22)

over \([0,{\bar{\lambda }}]\), with \(0< \epsilon <1\).

Proof of Lemma 1:

The existence of parameters \(\left\{ \lambda _{l}\right\} _{l=0}^{{\bar{s}} -1}\), and thus the partition of \({\mathbb {S}}\left( \bar{\lambda } \right) \), was proven by Jain et al. (2012). In their proof, replace \(\lambda \) by 1, and suppose \({\bar{\lambda }} = T\). On the other hand, uniqueness of these parameters can be proved by contradiction. For \(l = \{0..{\bar{s}} -1\}\), suppose that \(\xi _{1}^{l}\) and \(\xi _{2}^{l}\) are two roots of \(t_{l}(\xi )\) in \([0,{\bar{\lambda }}]\), with \(\xi _{1}^{l} \ne \xi _{2}^{l}\), and by construction, both are greater than 0. In this context, note that \(t_{l}(\xi )\) is differentiable and hence, continuous on \([\xi _{1}^{l}, \xi _{2}^{l}]\). Thus, by the Mean Value Theorem, we can find a number \(\nu \) in \((\xi _{1}^{l}, \xi _{2}^{l})\) such that (23) holds.

$$\begin{aligned} \frac{t_{l}(\xi _{2}^{l}) - t_{l}(\xi _{1}^{l})}{\xi _{2}^{l} - \xi _{1}^{l}}=t_{l}^{\prime }(\nu ) \end{aligned}$$
(23)

Since \(t_{l}(\xi _{2}^{l}) = t_{l}(\xi _{1}^{l}) =0 \), because they are roots of \(t_{l}(\xi )\), we get,

$$\begin{aligned} 0=t_{l}^{\prime }(\nu ) \end{aligned}$$
(24)

Recall that \(t_{l}^{\prime }(\xi ) = -e^{-\xi }\frac{\xi ^{l}}{l!}\) is negative for all \(\xi > 0\). So, there is not such \(\nu \) in \((\xi _{1}^{l}, \xi _{2}^{l})\), for which \(0=t_{l}^{\prime }(\nu )\), implying that \(\xi _{1}^{l} = \xi _{2}^{l}\), and thus the roots of \(t_{l}\left( \lambda \right) \) are unique in \(\lambda \) for each valid value of l. \(\square \)

Due to Lemma 1, \(s^{*}(\lambda )\) is an increasing step function in \(\lambda \). Besides, close form expressions are available only for \(\lambda _{0} = -\ln (\epsilon )\) and \(\lambda _{1}=-1-W_{-1}(-\frac{\epsilon }{e})\), where \(W_{-1}(x)\) is the lower branch of the Lambert W function. We now prove continuity, convexity and increasing behaviours of \(h^*\left( \lambda \right) \) in \(\lambda \).

Lemma 2

For any interval of \({\mathbb {S}}({\bar{\lambda }})\), \(h^*(\lambda )\) is continuous, convex and increasing in \(\lambda \).

Proof of Lemma 2

Convexity was proved by Rossi et al. (2014) (see their Appendix B). The increasing behavior was proved by Jain et al. (2012, Lemma 2). For the sake of the explanation, we briefly describe both proofs.

First, note that \(p(x,\lambda )\) is a continuous function of \(\lambda \). Thus \(f(s,\lambda )\) is also continuous in \(\lambda \).

Second, note that \(f(s,\lambda )\) can be expressed as \(C_{I}E[s - X]^{+} + C_{B}E[X - s]^{+}\), where \(x^{+} = max\{x,0\}\), E[X] denotes expectation, and \(X\sim \text {Poisson}\left( \lambda \right) \). Recall that \((X - s)^{+} = (s - X)^{+} + (X - s)\). Due to \(E(s - X)^{+}\) can be written as \(\sum _{j=0}^{s-1}P(X \le j)\), then \(f(s,\lambda )\) can be re-expressed as (25).

$$\begin{aligned} f(s,\lambda )= & {} (C_{I}+C_{B})\sum _{j=0}^{s-1}\sum _{x=0}^{j}p(x,\lambda ) + C_{B}(\lambda - s) \end{aligned}$$
(25)
$$\begin{aligned} \frac{\partial f\left( s,\lambda \right) }{\partial \lambda }= & {} -(C_{I}+C_{B})\sum _{j=0}^{s-1}p(j,\lambda ) + C_{B} \end{aligned}$$
(26)
$$\begin{aligned} \frac{\partial ^{2}f\left( s,\lambda \right) }{\partial \lambda ^{2}}= & {} (C_{I}+C_{B})p(s-1,\lambda ) \end{aligned}$$
(27)

Note that \(\frac{\partial ^{2}f(s,\lambda )}{\partial \lambda ^{2}} \ge 0, \ \forall \lambda >0\), and given \(s \in {\mathbb {Z}}^{+}\), so \(f(s,\lambda )\) is convex in \(\lambda \).

And third, let \(\lambda ^{*} = \arg \min _{\lambda >0} f\left( s,\lambda \right) \) be the unique root of \(\sum _{x=0}^{s-1}e^{ - \lambda ^{*}}\frac{{(\lambda ^{*})^x }}{{x!}}=\epsilon \). Hence, \(f(s,\lambda ) \ge f(s, \lambda ^{*})\), \(\forall \lambda \ge \lambda ^{*}\). Now consider the interval \([\lambda _{l-1},\lambda _{l}[\). If \(\lambda \in [\lambda _{l-1},\lambda _{l}[\), then by Lemma 1, \(s^{*}(\lambda )\)=\(\hbox {argmin}_{s \in {\mathbb {Z}}^+}f(s,\lambda ) = l\). But recall that if \(s^{*}(\lambda )=l\), \(f(l,\lambda )\) reach its minimum at \(\lambda _{l-1}\). Thus, \(f(l,\lambda ) \ge f(l,\lambda _{l-1})\). Therefore, \(h^*(\lambda ) = f(l,\lambda )\) is increasing in \([\lambda _{l-1},\lambda _{l}[, \ \forall l=0..{\bar{s}}-1\), and also for \([\lambda _{{\bar{s}} -1},\lambda _{{\bar{s}}}]\). \(\square \)

Finally, let us consider Lemma 3.

Lemma 3

For any interval \([\lambda _{l-1},\lambda _{l}[\), \(0 \le l <{\bar{s}}\), it holds that \(h^*(\lambda _{l}) = f(l,\lambda _{l}) = f(l+1,\lambda _{l})\), which implies \(s^{*}(\lambda _{l})\)=\(\hbox {argmin}_{s \in {\mathbb {Z}}^+}f(s,\lambda _{l})\)={l, l+1}.

Proof of Lemma 3:

We need to prove that,

$$\begin{aligned} f(l,\lambda _{l}) = f(l+1,\lambda _{l}) \end{aligned}$$
(28)

Consider (25),

$$\begin{aligned}&(C_{I}+C_{B})\sum _{j=0}^{l-1}\sum _{x=0}^{j}p(x,\lambda _l) + C_{B}(\lambda _{l} - l) \nonumber \\&\quad = (C_{I}+C_{B})\sum _{j=0}^{l}\sum _{x=0}^{j}p(x,\lambda _l) + C_{B}(\lambda _{l} - l -1) \end{aligned}$$
(29)

Rearranging terms, it is clear that,

$$\begin{aligned} C_{B} = (C_{I} + C_{B})\sum _{x=0}^{j}p(x,\lambda _l) \end{aligned}$$
(30)

Which is equivalent to,

$$\begin{aligned} \epsilon = \sum _{x=0}^{j}p(x,\lambda _l) \end{aligned}$$
(31)

and this last equality holds due to Lemma 1.

Due to Lemmas 2 and 3, \(h^*(\lambda )\) is both continuous and increasing in \({\mathbb {S}}({\bar{\lambda }})\). Now suppose that \(0< \lambda _{i} < \lambda _{j} \le {\bar{\lambda }}\). Then \(h^*(\lambda _{i}) < h^*(\lambda _{j})\). Let \(\lambda _{i} = \lambda _{i}\tau _i \) and \(\lambda _{j} = \lambda _{j}\tau _j\). Thus the following holds: \(h^*(\lambda _{i}\tau _i) = f_{i}(s_{i}^{*}) < f_{j}(s_{j}^{*}) = h^*(\lambda _{j}\tau _j)\), which proves the second part of Theorem 4. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varas, M., Basso, F., Lüer-Villagra, A. et al. Managing premium wines using an \((s - 1,s)\) inventory policy: a heuristic solution approach. Ann Oper Res 280, 351–376 (2019). https://doi.org/10.1007/s10479-019-03266-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03266-3

Keywords

Navigation