Skip to main content

Advertisement

Log in

A framework for fatigue reliability analysis of high-pressure turbine blades

  • S.I.: Reliability Modeling with Applications Based on Big Data
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Fatigue evolution under continued stresses is a process of degradation of material performance with many uncertainties. In order to quantify the uncertainties of materials and working conditions, a probabilistic method is utilized to estimate the reliability of structures by considering scatter of the fatigue life prediction model, in which improvements are provided to model the accumulation of the damage. Firstly, the fatigue parameters are modeled by the Bayesian theory and the finite element analysis. Secondly, the distributions of parameters are transformed by the probabilistic method into the distribution of fatigue life by using the fatigue life prediction model, and a damage accumulation model is chosen to characterize regulation evolution of properties. Finally, the probability distribution function transformation approach is employed to expound distribution of fatigue damage by the known distribution of fatigue life, and a general probabilistic method is then used to estimate the reliability. By combining the above methods, the framework for reliability analysis is established and then is used to calculate the reliability for high-pressure turbine blades in a low cycle fatigue region under variable amplitude loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

v e :

Elastic Poisson’s ratio

v p :

Plastic Poisson’s ratio

τ max, τ A, max :

Maximum shear stress on the corresponding critical plane

τ B :

Shear stress on the corresponding critical plane

σ n, max, σ max, σ B, max :

Maximum normal stress on the corresponding critical plane

σ A :

Normal stress on the corresponding critical plane

σ a :

Normal stress amplitude

\( \sigma_{f}^{{\prime }} \) :

Fatigue strength coefficient

σ y :

Yield strength

Δγ max, Δγ A, max :

Maximum shear strain range on the corresponding critical plane

Δγ B :

Shear strain range on the corresponding critical plane

\( \Delta \varepsilon_{e} \) :

Elastic strain

\( \Delta \varepsilon_{p} \) :

Plastic strain

Δε A :

Normal strain range on the corresponding critical plane

ε a :

Normal strain amplitude

Δε max, Δε B, max :

Maximum normal strain range on the corresponding critical plane

\( \varepsilon_{f}^{{\prime }} \) :

Fatigue ductility coefficient

b :

Fatigue strength exponent

c :

Fatigue ductility exponent

\( \tau_{f}^{{\prime }} \) :

Shear fatigue strength coefficient

b 1 :

Shear fatigue strength exponent

\( \gamma_{f}^{{\prime }} \) :

Shear fatigue ductility coefficient

c 1 :

Shear fatigue ductility exponent

\( \mu_{{N_{f} }} \) :

Mean value of life cycles

\( \mu_{D} \) :

Mean value of damage

\( \sigma_{{N_{f} }} \) :

Variance of life cycles

\( \sigma_{D} \) :

Variance of damage

D :

Damage

\( a \) :

Damage exponent

E :

Young’s modulus

G :

Shear modulus

ρ :

Density

\( N_{f} ,N_{f1} ,N_{f2} \) :

Number of cycles to failure

\( T_{f} \) :

Total life

\( S \) :

Applied stress

\( k,C,m \) :

Material parameter

\( \omega_{1} ,\omega_{2} ,\omega_{3} \) :

Rotational speed

HP:

High-pressure

FEA:

Finite element analysis

FS:

Fatemi-Socie

SWT:

Smith–Watson–Topper

MECP:

Modified energy-critical plane

MSSRP:

Maximum shear strain range plane

MNSRP:

Maximum normal strain range plane

References

  • Basan, R., Franulović, M., Prebil, I., & Črnjarić-Žic, N. (2011). Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials. International Journal of Fatigue, 33(3), 484–491.

    Article  Google Scholar 

  • Benjamin, J. R., & Cornell, C. A. (2014). Probability, statistics, and decision for civil engineers. United States: Dover Publications.

    Google Scholar 

  • Cui, W. (2002). A state-of-the-art review on fatigue life prediction methods for metal structures. Journal of Marine Science and Technology, 7(1), 43–56.

    Article  Google Scholar 

  • Echard, B., Gayton, N., & Bignonnet, A. (2014). A reliability analysis method for fatigue design. International Journal of Fatigue, 59, 292–300.

    Article  Google Scholar 

  • Fatemi, A., & Socie, D. (1988). A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue and Fracture of Engineering Materials and Structures, 11(3), 149–165.

    Article  Google Scholar 

  • Fatemi, A., & Yang, L. (1998). Cumulative fatigue damage and life prediction theories, a survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1), 9–34.

    Article  Google Scholar 

  • Gaspar, B., Teixeira, A. P., & Guedes, S. C. (2017). Adaptive surrogate model with active refinement combining Kriging and a trust region method. Reliability Engineering & System Safety., 165, 277–291.

    Article  Google Scholar 

  • Grell, W. A., & Laz, P. J. (2010). Probabilistic fatigue life prediction using AFGROW and accounting for material variability. International Journal of Fatigue, 32(7), 1042–1049.

    Article  Google Scholar 

  • Guida, M., & Penta, F. (2010). A Bayesian analysis of fatigue data. Structural Safety, 32(1), 64–76.

    Article  Google Scholar 

  • Huang, W., Garbatov, Y., & Guedes, S. C. (2014). Fatigue reliability of a web frame subjected to random non-uniform corrosion wastage. Structural Safety, 48, 51–62.

    Article  Google Scholar 

  • Huang, H. Z., Huang, C. G., Peng, Z., Li, Y. F., & Yin, H. (2017). Fatigue life prediction of fan blade using nominal stress method and cumulative fatigue damage theory. International Journal of Turbo & Jet Engines. https://doi.org/10.1515/tjj-2017-0015.

    Article  Google Scholar 

  • Ince, A., & Glinka, G. (2011). A modification of Morrow and Smith–Watson–Topper mean stress correction models. Fatigue and Fracture of Engineering Materials and Structures, 34(11), 854–867.

    Article  Google Scholar 

  • Jiang, T., & Liu, Y. (2017). Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences. Reliability Engineering & System Safety, 166, 3–15.

    Article  Google Scholar 

  • Korsunsky, A. M., Dini, D., Dunne, F. P., & Walsh, M. J. (2007). Comparative assessment of dissipated energy and other fatigue criteria. International Journal of Fatigue, 29(9), 1990–1995.

    Article  Google Scholar 

  • Kwofie, S., & Chandler, H. D. (2001). Low cycle fatigue under tensile mean stresses where cyclic life extension occurs. International Journal of Fatigue, 23(4), 341–345.

    Article  Google Scholar 

  • Li, X. Y., Huang, H. Z., & Li, Y. F. (2018a). Reliability analysis of phased mission system with non-exponential and partially repairable components. Reliability Engineering & System Safety, 175, 119–127.

    Article  Google Scholar 

  • Li, H., Huang, H. Z., Li, Y. F., Zhou, J., & Mi, J. (2018b). Physics of failure-based reliability prediction of turbine blades using multi-source information fusion. Applied Soft Computing, 72, 624–635.

    Article  Google Scholar 

  • Liu, Y., & Chen, C. J. (2017). Dynamic reliability assessment for nonrepairable multistate systems by aggregating multilevel imperfect inspection data. IEEE Transactions on Reliability, 66(2), 281–297.

    Article  Google Scholar 

  • Liu, C. L., Lu, Z. Z., Xu, Y. L., & Yue, Z. F. (2005). Reliability analysis for low cycle fatigue life of the aeronautical engine turbine disc structure under random environment. Materials Science and Engineering A, 395(1), 218–225.

    Article  Google Scholar 

  • Lv, Z., Huang, H. Z., Zhu, S. P., Gao, H., & Zuo, F. (2015). A modified nonlinear fatigue damage accumulation model. International Journal of Damage Mechanics, 24(2), 168–181.

    Article  Google Scholar 

  • Mahmud, M., Abdullah, S., Ariffin, A. K., & Nopiah, Z. M. (2017). Probabilistic scatter band with error distribution for fatigue life comparisons. Experimental Techniques, 41(5), 505–515.

    Article  Google Scholar 

  • Mi, J., Li, Y. F., Peng, W., & Huang, H. Z. (2018). Reliability analysis of complex multi-state system with common cause failure based on evidential networks. Reliability Engineering & System Safety, 174, 71–81.

    Article  Google Scholar 

  • Mi, J., Li, Y. F., Yang, Y. J., Peng, W., & Huang, H. Z. (2016). Reliability assessment of complex electromechanical systems under epistemic uncertainty. Reliability Engineering & System Safety, 152, 1–15.

    Article  Google Scholar 

  • Ni, K., & Mahadevan, S. (2004). Strain-based probabilistic fatigue life prediction of spot-welded joints. International Journal of Fatigue, 26(7), 763–772.

    Article  Google Scholar 

  • Rackwitz, R. (2001). Reliability analysis—A review and some perspectives. Structural Safety, 23, 365–395.

    Article  Google Scholar 

  • Rathod, V., Yadav, O. P., Rathore, A., & Jain, R. (2011). Probabilistic modeling of fatigue damage accumulation for reliability prediction. International Journal of Quality, Statistics, and Reliability, 2011(1), 1–11.

    Article  Google Scholar 

  • Sandberg, D., Mansour, R., & Olsson, M. (2017). Fatigue probability assessment including aleatory and epistemic uncertainty with application to gas turbine compressor blades. International Journal of Fatigue, 95, 132–142.

    Article  Google Scholar 

  • Schijve, J. (2001). Fatigue of structures and materials. Berlin: Springer.

    Google Scholar 

  • Shang, D. G., & Wang, D. J. (1998). A new multiaxial fatigue damage model based on the critical plane approach. International Journal of Fatigue, 20(3), 241–245.

    Article  Google Scholar 

  • Shen, H., Lin, J., & Mu, E. (2000). Probabilistic model on stochastic fatigue damage. International Journal of Fatigue, 22(7), 569–572.

    Article  Google Scholar 

  • Smith, K. N., Watson, P., & Topper, T. H. (1970). A stress–strain function for the fatigue of metals. Journal of materials, 5, 767–778.

    Google Scholar 

  • Sun, G. Q., Shang, D. G., & Bao, M. (2010). Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials. International Journal of Fatigue, 32(7), 1108–1115.

    Article  Google Scholar 

  • Xiao, N. C., Zuo, M. J., & Zhou, C. (2018). A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis. Reliability Engineering & System Safety, 169, 330–338.

    Article  Google Scholar 

  • Ye, D., & Wang, Z. (2001). A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. International Journal of Fatigue, 23(8), 679–687.

    Article  Google Scholar 

  • Yu, H. C., & Wu, X. R. (2014). Manual of material data in engine design, the fourth volumes. Beijing: Aviation Industrial Press.

    Google Scholar 

  • Zhang, X., Gao, H., Huang, H. Z., Li, Y. F., & Mi, J. (2018). Dynamic reliability modeling for system analysis under complex load. Reliability Engineering & System Safety, 180, 345–351.

    Article  Google Scholar 

  • Zhou, J., Huang, H. Z., & Li, H. (2018). A novel energy-critical multiaxial fatigue life prediction for low cycle fatigue under mixed-mode loading. Metals, 8(12), 1066.

    Article  Google Scholar 

  • Zhou, J., Huang, H. Z., & Peng, Z. (2017). Fatigue life prediction of turbine blades based on modified equivalent strain model. Journal of Mechanical Science and Technology, 31(9), 4203–4213.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under the Contract Number 51875089. The authors would like to express special thanks to Prof. C. G. Soares at Universidade de Lisboa for his considerable help. The authors also appreciate the reviewers for their constructive comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Zhong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Huang, HZ., Li, YF. et al. A framework for fatigue reliability analysis of high-pressure turbine blades. Ann Oper Res 311, 489–505 (2022). https://doi.org/10.1007/s10479-019-03203-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03203-4

Keywords

Navigation