Skip to main content
Log in

Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty

  • S.I.: CLAIO 2016
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper considers the problem of zone delineation management and crop planning. The problem consists of selecting which crops to plant in different management zones in order to minimize the total costs subjected to a given demand requirement. From a hierarchical point of view, the process starts by generating a partition of an agricultural field into homogeneous management zones, according to a given soil property. Then, the best crop rotation must be assigned to each management zone, applying agronomic practices in a site-specific manner in each zone. This hierarchical approach establishes two decision making levels of planning. At each level, a two-stage stochastic optimization model is proposed, representing the uncertain behavior of a soil property and crop yields by using a finite set of scenarios. Next, we combined them into a new two-stage stochastic program, solving an integrated approach by simultaneously determining an optimal zoning and allocation. Results from a set of evaluated instances showed the relevance of the proposed methodology and the benefits of the hierarchical approach over the integrated one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Cid-García et al. (2013)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeyemo, J., & Otieno, F. (2010). Differential evolution algorithm for solving multiobjective crop planning model. Agricultural Water Management,97(6), 848–856.

    Google Scholar 

  • Ahumada, O., Villalobos, J. R., & Mason, A. N. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems,112, 17–26.

    Google Scholar 

  • Alabdulkader, A. M., Al-Amoud, A. I., & Awad, F. S. (2012). Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model. Agricultural Economics,58(2), 56–60.

    Google Scholar 

  • Albornoz, V. M., Cid-García, N. M., Ortega, R., & Ríos-Solís, Y. A. (2015). A hierarchical planning scheme based on precision agriculture. In L. M. Plà-Aragonés (Ed.), Handbook of operations research in agriculture and the agri-food industry (pp. 129–162). Berlin: Springer.

    Google Scholar 

  • Albornoz, V. M., & Ñanco, L. J. (2016). An empirical design of a column generation algorithm applied to a management zone delineation problem. In R. J. Fonseca, G. W. Weber, & J. Telhada (Eds.), Computational management science. State of the art 2014. Lecture notes in economics and mathematical systems (Vol. 682, pp. 201–208).

  • Alfandari, L., Lemalade, J. L., Nagih, A., & Plateau, G. (2011). A MIP flow model for crop-rotation planning in a context of forest sustainable development. Annals of Operations Research,190(1), 149–164.

    Google Scholar 

  • Alfandari, L., Plateau, A., & Schepler, X. (2015). A branch-and-price-and-cut approach for sustainable crop rotation planning. European Journal of Operational Research,241(3), 872–879.

    Google Scholar 

  • Amini, A. (2015). Application of fuzzy multi-objective programming in optimization of crop production planning. Asian Journal of Agricultural Research,9(5), 208–222.

    Google Scholar 

  • Birge, J., & Loveaux, F. (2011). Introduction to Stochastic programming (2nd ed.). New York: Springer.

    Google Scholar 

  • Blackmore, S., Godwin, R., & Fountas, S. (2000). The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture,26(1), 37–51.

    Google Scholar 

  • Bravo, M., & González, I. (2009). Applying stochastic goal programming: A case study on water use planning. European Journal of Operational Research,196, 1123–1129.

    Google Scholar 

  • Carr, P., Carlson, G., Jacobsen, J., Skogley, G., & Nielsenand, E. (1991). Farming soils, not fields: A strategy for increasing fertilizer profitability. Journal of Production Agriculture,93, 11–20.

    Google Scholar 

  • Cid-García, N., Albornoz, V., Ríos-Solís, Y., & Ortega, R. (2013). Rectangular shape management zone delineation using integer linear programming. Computers and Electronics in Agriculture,93, 1–9.

    Google Scholar 

  • Cid-García, N. M., Bravo-Lozano, A. G., & Ríos-Solís, Y. A. (2014). A crop planning and real-time irrigation method based on site-specific management zones and linear programming. Computers and Electronics in Agriculture,107, 20–28.

    Google Scholar 

  • Clark, H. R. (1989). Combinatorial aspects of cropping pattern selection in agriculture. European Journal of Operational Research,40(1), 70–77.

    Google Scholar 

  • Costa, A. M., Dos Santos, L. M. R., Alem, D. J., & Santos, R. H. S. (2014). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research,219, 265–283.

    Google Scholar 

  • Dantzig, G. (1955). Linear programming under uncertainty. Management Science,1(3), 197–206.

    Google Scholar 

  • Detlefsen, N. K., & Jensen, A. L. (2007). Modelling optimal crop sequences using network flows. Agricultural Systems,94(2), 566–572.

    Google Scholar 

  • Diker, K., Heermann, D., & Brodahl, M. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture,5(5), 435–444.

    Google Scholar 

  • Dogliotti, S., Rossing, W. A. H., & Van Ittersum, M. K. (2003). ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy,19(2), 239–250.

    Google Scholar 

  • Dos Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2011). Crop rotation scheduling with adjacency constraints. Annals of Operations Research,190(1), 165–180.

    Google Scholar 

  • Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development,32(2), 567–580.

    Google Scholar 

  • Filho, A. A., De Oliveira Florentino, H., & Pato, M. V. (2012). A genetic algorithm for crop rotation. In Proceedings of the 1st international conference on operations research and enterprise systems (ICORES) (pp. 454–457). Vilamoura.

  • Filippi, C., Mansini, R., & Stevanato, E. (2017). Mixed integer linear programming models for optimal crop selection. Computers and Operations Research,81, 26–39.

    Google Scholar 

  • Fraisse, C. W., Sudduth, K. A., & Kitchen, N. R. (2001). Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. American Society of Agricultural Engineers,44(1), 155–166.

    Google Scholar 

  • Franzen, D. W., & Nanna, T. N. (2003). Management zone delineation methods. In: P. C. Robert (Ed.), Proceedings of the 6th international conference on precision agriculture and other precision resources management (pp. 443–457). Minneapolis: American Society of Agronomy.

  • Gassmann, H. I., & Ziemba, W. T. (2012). Stochastic programming. Applications in finance, energy, planning and logistics. Singapore: World Scientific Publishing Company.

    Google Scholar 

  • Gujarati, D. N., & Porter, D. C. (2008). Basic econometrics (5th ed.). New York: McGraw-Hill Education.

    Google Scholar 

  • Haghverdi, A., Leib, B. G., Washington-Allen, R. A., Ayers, P. D., & Buschermohle, M. J. (2015). Perspectives on delineating management zones for variable rate irrigation. Computers and Electronics in Agriculture,117, 154–167.

    Google Scholar 

  • Haneveld, W. K. K., & Stegeman, A. W. (2005). Crop succession requirements in agricultural production planning. European Journal of Operational Research,166(2), 406–429.

    Google Scholar 

  • Hornung, A., Khosla, R., Reich, R., Inman, D., & Westfall, D. G. (2006). Comparison of site-specific management zones: Soil-color-based and yield-based. Agronomy Journal,98(2), 407–415.

    Google Scholar 

  • Itoh, T., Ishii, H., & Nanseki, T. (2003). A model of crop planning under uncertainty in agricultural management. International Journal of Production Economics,81–82, 555–558.

    Google Scholar 

  • Jaynes, D. B., Colvin, T. S., & Kaspar, T. C. (2005). Identifying potential soybean management zones from multi-year yield data. Computers and Electronic in Agriculture,46(1), 309–327.

    Google Scholar 

  • Jiang, Q., Fu, Q., & Wang, Z. (2011). Study on delineation of irrigation management zones based on management zone analyst software. In D. Li, Y. Liu & Y. Chen (Eds.), Computer and computing technologies in agriculture IV. CCTA 2010. IFIP Advances in Information and Communication Technology (Vol. 346). Heidelberg: Springer.

    Google Scholar 

  • Lehmann, N., Finger, R., Klein, T., Calanca, P., & Walter, A. (2013). Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agricultural Systems,117, 55–65.

    Google Scholar 

  • Li, M., & Guo, P. (2015). A coupled random fuzzy two-stage programming model for crop area optimization: A case study of the middle Heihe River basin, China. Agricultural Water Management,155, 53–66.

    Google Scholar 

  • Liu, J., Li, Y. P., Huang, G. H., & Zeng, X. T. (2014). A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty. Resources, Conservation and Recycling,88, 50–66.

    Google Scholar 

  • Mainuddin, M., Das Grupta, A., & Raj Onta, P. (1996). Optimal crop planning model for an existing groundwater irrigation Project in Thailand. Agricultural Water Management,33(1), 43–62.

    Google Scholar 

  • Memmah, M.-M., Lescourret, F., Yao, X., & Lavigne, C. (2015). Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development,35(3), 975–998.

    Google Scholar 

  • Ortega Alvarez, J. F., de Juan Valero, J. A., Tarjuelo Martín-Benito, J. M., & López Mata, E. (2004). MOPECO: An economic optimization model for irrigation water management. Irrigation Science,23, 61–75.

    Google Scholar 

  • Ortega, J., Foster, W., & Ortega, R. (2002). Definición de sub-rodales para una silvicultura de precisión: una aplicación del método Fuzzy K-means. Ciencia e Investigación Agraria,29(1), 35–44.

    Google Scholar 

  • Ortega, R., & Flores, L. (1999). Introducción al manejo sitio-específico. In R. Ortega & L. Flores (Eds.), Agricultura de Precisión (pp. 13–46). Santiago: Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu, Ministerio de Agricultura.

    Google Scholar 

  • Ortega, R., & Santibanez, O. A. (2007). Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in Agriculture,58, 49–59.

    Google Scholar 

  • Pedroso, M., Taylor, J., Tisseyre, B., Charnomordie, B., & Guillaume, S. (2010). A segmentation algorithm for the delineation of agricultural management zones. Computers and Electronics in Agriculture,70(1), 199–208.

    Google Scholar 

  • Rǎdulescu, M., Rǎdulescu, C. Z., & Zbǎganu, G. (2014). A portfolio theory approach to crop planning under environmental constraints. Annals of Operations Research,29(1), 243–264.

    Google Scholar 

  • Santos, L. M. R., Munari, P., Costa, A. M., Arenales, M. N., & Santos, R. H. S. (2015). A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. European Journal of Operational Research,245, 581–590.

    Google Scholar 

  • Sarker, R., & Ray, T. (2009). An improved evolutionary algorithm for solving multi-objective crop planning models. Computers and Electronics in Agriculture,68(2), 191–199.

    Google Scholar 

  • Sarker, R. A., Talukdar, S., & Haque, A. F. M. (1997). Determination of optimum crop mix for crop cultivation in Bangladesh. Applied Mathematical Modelling,21(10), 621–632.

    Google Scholar 

  • Schepers, J., O’Neill, P., & Shanahan, J. (2004). Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. American Society of Agronomy,96(6), 1660–1667.

    Google Scholar 

  • Toyonaga, T., Itoh, T., & Ishii, H. (2005). A crop planning problem with fuzzy random profit coefficients. Fuzzy Optimization and Decision Making,4(1), 51–69.

    Google Scholar 

  • Whelan, B. M., Cupitt, J., & McBratney, A. B. (2003). Practical definition and interpretation of potential management zones in Australian dryland cropping. In P. C. Robert (Ed,), Proceedings of the 6th international conference on precision agriculture and other precision resources management (pp. 395–409). Minneapolis: American Society of Agronomy.

  • Wiedenmann, S., & Geldermann, J. (2015). Supply planning for processors of agricultural raw materials. European Journal of Operational Research,242, 606–619.

    Google Scholar 

  • Xiaohu, Z., Li, J., Xiaolei, Q., Jianxiu, Q., Juan, W., & Yan, Z. (2016). An improved method of delineating rectangular management zones using a semivariogram-based technique. Computers and Electronics in Agriculture,121, 74–83.

    Google Scholar 

  • Zeng, X., Kang, S., Li, F., Zhang, L., & Guo, P. (2010). Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management,98, 134–142.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions on earlier versions of this paper. We also appreciate the work performed by research assistants Francisco Peñailillo and Gonzalo Agusto. This research was partially supported by DGIIP from Universidad Técnica Federico Santa María (Grants USM 28.15.20 and PIM 172) and DGIP from Universidad del Bío-Bío (Project DIUBB No. 161418 3/R). The authors also wish to acknowledge the Ibero-American Program for Science and Technology for Development (CYTED 516RT0513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Albornoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albornoz, V.M., Véliz, M.I., Ortega, R. et al. Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty. Ann Oper Res 286, 617–634 (2020). https://doi.org/10.1007/s10479-019-03198-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03198-y

Keywords

Navigation