Skip to main content
Log in

Theoretical and computational study of several linearisation techniques for binary quadratic problems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We perform a theoretical and computational study of the classical linearisation techniques (LT) and we propose a new LT for binary quadratic problems (BQPs). We discuss the relations between the linear programming (LP) relaxations of the considered LT for generic BQPs. We prove that for a specific class of BQP all the LTs have the same LP relaxation value. We also compare the LT computational performance for four different BQPs from the literature. We consider the Unconstrained BQP and the maximum cut of edge-weighted graphs and, in order to measure the effects of constraints on the computational performance, we also consider the quadratic extension of two classical combinatorial optimization problems, i.e., the knapsack and stable set problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, W. P., Forrester, R. J., & Glover, F. W. (2004). Comparisons and enhancement strategies for linearizing mixed 0–1 quadratic programs. Discrete Optimization, 1(2), 99–120.

    Article  Google Scholar 

  • Adams, W. P., & Sherali, H. D. (1986). A tight linearization and an algorithm for zero-one quadratic programming problems. Management Science, 32(10), 1274–1290.

    Article  Google Scholar 

  • Billionnet, A., & Soutif, E. (2004). An exact method based on lagrangian decomposition for the 01 quadratic knapsack problem. European Journal of Operational Research, 157(3), 565–575.

    Article  Google Scholar 

  • Caprara, A. (2008). Constrained 0–1 quadratic programming: Basic approaches and extensions. European Journal of Operational Research, 187, 1494–1503.

    Article  Google Scholar 

  • Caprara, A., Pisinger, D., & Toth, P. (1999). Exact solution of the quadratic knapsack problem. INFORMS Journal on Computing, 11(2), 125–137.

    Article  Google Scholar 

  • Chaovalitwongse, W., Pardalos, P. M., & Prokopyev, O. A. (2004). A new linearization technique for multi-quadratic 01 programming problems. Operations Research Letters, 32(6), 517–522.

    Article  Google Scholar 

  • Conforti, M., Cornuéjols, G., & Zambelli, G. (2010). Extended formulations in combinatorial optimization. 4OR, 8(1), 1–48.

    Article  Google Scholar 

  • Forrester, R., & Greenberg, H. (2008). Quadratic binary programming models in computational biology. Algorithmic Operations Research, 3(2), 110–129.

    Google Scholar 

  • Fortet, R. (1960). L’algebre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica, 11(2), 111–118.

    Article  Google Scholar 

  • Furini, F., & Traversi, E. (2013). Hybrid SDP bounding procedure. Lecture Notes in Computer Science, 7933, 248–259.

    Article  Google Scholar 

  • Glover, F. (1975). Improved linear integer programming formulations of nonlinear integer programs. Management Science, 22(4), 455–460.

    Article  Google Scholar 

  • Glover, F., & Woolsey, E. (1973). Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1), 156–161.

    Article  Google Scholar 

  • Glover, F., & Woolsey, E. (1974). Converting the 0–1 polynomial programming problem to a 0–1 linear program. Operations Research, 22(1), 180–182.

    Article  Google Scholar 

  • Gueye, S., & Michelon, P. (2009). A linearization framework for unconstrained quadratic (0–1) problems. Discrete Applied Mathematics, 157(6), 1255–1266.

    Article  Google Scholar 

  • Hansen, P., & Meyer, C. (2009). Improved compact linearizations for the unconstrained quadratic 01 minimization problem. Discrete Applied Mathematics, 157(6), 1267–1290.

    Article  Google Scholar 

  • ILOG IBM. (2017). Cplex optimizer.

  • Jaumard, B., Marcotte, O., & Meyer, C. (1998). Estimation of the Quality of Cellular Networks Using Column Generation Techniques. Cahiers du GÉRAD. Groupe d’études et de recherche en analyse des décisions.

  • Krislock, N., Malick, J., & Roupin, F. (2014). Improved semidefinite bounding procedure for solving Max-Cut problems to optimality. Mathematical Programming, 143(1), 61–86.

    Article  Google Scholar 

  • Lodi, A. (2010). Mixed integer programming computation. In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey (Eds.), 50 Years of integer programming 1958–2008 (pp. 619–645). Berlin: Springer.

    Chapter  Google Scholar 

  • Padberg, M. (1989). The boolean quadric polytope: Some characteristics, facets and relatives. Mathematical Programming, 45(1), 139–172.

    Article  Google Scholar 

  • Pisinger, D. (2007). The quadratic knapsack problem: A survey. Discrete Applied Mathematics, 155(5), 623–648.

    Article  Google Scholar 

  • Rendl, F., Rinaldi, G., & Wiegele, A. (2010). Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Mathematical Programming, 121(2), 307–335.

    Article  Google Scholar 

  • Sherali, H. D., & Adams, W. P. (1998). A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Berlin: Springer.

    Google Scholar 

  • Sherali, H. D., & Smith, J. C. (2007). An improved linearization strategy for zero-one quadratic programming problems. Optimization Letters, 1(1), 33–47.

    Article  Google Scholar 

  • Wang, H., Kochenberger, G., & Glover, F. (2012). A computational study on the quadratic knapsack problem with multiple constraints. Computers & Operations Research, 39(1), 3–11.

    Article  Google Scholar 

  • Wiegele, A. (2007). Biq mac library—A collection of max-cut and quadratic 01 programming instances of medium size. Technical report, Alpen-Adria-Universität Klagenfurt, Austria.

Download references

Acknowledgements

Thanks are due to two anonymous referees for careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Furini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furini, F., Traversi, E. Theoretical and computational study of several linearisation techniques for binary quadratic problems. Ann Oper Res 279, 387–411 (2019). https://doi.org/10.1007/s10479-018-3118-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3118-2

Keywords

Navigation