Skip to main content
Log in

Shared mobility systems: an updated survey

  • SI: 4OR Surveys
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Transportation habits have been significantly modified in the past decade by the introduction of shared mobility systems. These have emerged as a partial response to the need of resorting to green means of transportation and to the desire of being more flexible in the choice of trips, both from a spatial and a temporal point of view. On the one hand, shared mobility systems have taken advantage of the interest of riders for shared experiences. On the other hand, their success has been possible as a result of the recent advances in information and communications technology. The operational research community is already very active in this emerging field, which provides a very rich source of new and interesting challenges, covering several planning levels, from strategic to operational ones, such as station location, station sizing, rebalancing routes. A fascinating feature of this field is the variety of the methods used to deal with these questions. Our purpose is to survey the main problems and methods arising in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeloudis, P., Hu, J., & Bell, M. G. H. (2014). A strategic repositioning algorithm for bicycle-sharing scheme. Transportmetrica A: Transport Science, 10, 759–774.

    Article  Google Scholar 

  • Benchimol, M., Benchimol, P., Chappert, B., de la Taille, A., Laroche, F., Meunier, F., et al. (2011). Balancing the stations of a self service “bike hire” system. RAIRO-Operations Research, 45, 37–61.

    Article  Google Scholar 

  • Berman, B., Jerram, L., & Gartner, J. (2013). Casharing programs. Navigant Consulting, 3Q. www.navigantresearch.com. Accessed October 27, 2015.

  • Bruglieri, M., Colorni, A., & Luè, A. (2014). The relocation problem for the one-way electric vehicle sharing. Networks, 64, 292–305.

    Article  Google Scholar 

  • Bulhões, T., Subramanian, A., Erdoğan, G., & Laporte, G. (2018). The static bike relocation problem with multiple vehicles and visits. European Journal of Operational Research, 264, 508–523.

    Article  Google Scholar 

  • Caggiani, L., & Ottomanelli, M. (2013). A dynamic simulation based model for optimal fleet repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences, 87, 203–210.

    Article  Google Scholar 

  • Chemla, D., Meunier, F., Pradeau, T., Wolfler Calvo, R., & Yahiaoui, H. (2013a). Self-service bike sharing systems: Simulation, repositioning, pricing. Technical report, \(<\)hal-00824078\(>\). https://hal.archives-ouvertes.fr/hal-00824078/document.

  • Chemla, D., Meunier, F., & Wolfler Calvo, R. (2013b). Bike-sharing systems: Solving the static rebalancing problem. Discrete Optimization, 10, 120–146.

    Article  Google Scholar 

  • Chiariotti, F., Pielli, C., Zanella, A., & Zorzi, M. (2018). A dynamic approach to rebalancing bike-sharing systems. Sensors, 18, 512.

    Article  Google Scholar 

  • Chow, J. Y. J., & Sayarshad, H. R. (2014). Symbiotic network design strategies in the presence of coexisting transportation networks. Transportation Research Part B: Methodological, 62, 13–34.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153, 235–256.

    Article  Google Scholar 

  • Cômes, E., & Oukhellou, L. (2014). Model-based count series clustering for bike sharing system usage mining, a case study with the Vélib’ system of Paris. ACM Transactions on Intelligent Systems and Technology, 5, 39:1–39:21.

    Google Scholar 

  • Contardo, C., Morency, C., & Rousseau, L.-M. (2012). Balancing a dynamic public bike-sharing system. Technical report, CIRRELT-2012-09. https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf

  • Correia, G. H. de A., & Antunes, A. P. (2012). Optimization approach to depot location and trip selection in one-way car sharing systems. Transportation Research Part E: Logistics and Transportation Review, 48, 233–247.

    Article  Google Scholar 

  • Datner, S., Raviv, T., Tzur, M., & Chemla, D. (to appear). Setting inventory levels in a bike sharing network. Transportation Science. https://doi.org/10.1287/trsc.2017.0790.

  • Dell’Amico, M., Hadjicostantinou, E., Iori, M., & Novellani, S. (2014). The bike sharing rebalancing problem: Mathemmatical formulations and benchmark instances. Omega, 45, 7–19.

    Article  Google Scholar 

  • DeMaio, P. (2009). Bike-sharing: History, impacts, models of prevision, and future. Journal of Public Transportation, 12, 41–56.

    Article  Google Scholar 

  • Dentcheva, D., Prékopa, A., & Ruszczyński, A. (2002). Bounds for probabilistic integer programming problems. Discrete Applied Mathematics, 124, 55–65.

    Article  Google Scholar 

  • Di Febbraro, A., Sacco, N., & Saeednia, M. (2012). One way car sharing: Solving the relocation problem. Transportation Research Record, 2319, 113–120.

    Article  Google Scholar 

  • Di Gaspero, L., Rendl, A., & Urli, T. (2013a). A hybrid ACO+CP for balancing bike sharing systems. In M. J. Blesa., C. Blum., P. Festa., A. Roli & M. Sampels (Eds.), Hybrid Metaheuristics. HM 2013. Lecture Notes in Computer Science (Vol. 7919). Berlin, Heidelberg: Springer.

  • Di Gaspero, L., Rendl, A., & Urli, T. (2013b). Constraint-based approaches for balancing bike sharing systems. In Principles and practice of constraint programming, 19th international conference (pp. 758–773). Berlin: Springer.

  • Efthymiou, D., Antoniou, C., & Waddell, P. (2013). Factors affecting the adoption of vehicle sharing systems by young drivers. Transport Policy, 9, 64–73.

    Article  Google Scholar 

  • Erdoğan, G., Battarra, M., & Wolfler Calvo., R. (2015). An exact algorithm for the static rebalancing problem arising in bicycle sharing systems. European Journal of Operational Research, 245, 667–679.

    Article  Google Scholar 

  • Erdoğan, G., Laporte, G., & Wolfler Calvo, R. (2014). The static bicycle relocation problem with demand intervals. European Journal of Operational Research, 238, 451–457.

    Article  Google Scholar 

  • Forma, I. A., Raviv, T., & Tzur, M. (2015). A 3-step math heuristic for the static repositioning problem in bike-sharing systems. Transportation Research Part B: Methodological, 71, 230–247.

    Article  Google Scholar 

  • Franceschetti, A., Jabali, O., & Laporte, G. (2017). Continuous approximation models in freight distribution management. TOP, 25, 413–433.

    Article  Google Scholar 

  • Fricker, C., & Gast, N. (2016). Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO Journal on Transportation and Logistics, 5, 261–291.

    Article  Google Scholar 

  • George, D. K., & Xia, C. H. (2011). Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. European Journal of Operational Research, 211, 198–207.

    Article  Google Scholar 

  • Ghosh, S., & Varakantham, P. (2017) Incentivising the use of bike trailers for dynamic repositioning in bike sharing systems. In International conference on automated planning and scheduling (ICAPS).

  • Ghosh, S., Varakantham, P., Adulyasak, Y., & Jaillet, P. (2017). Dynamic repositioning to reduce lost demand in bike sharing systems. Journal of Artificial Intelligence Research, 58, 387–430.

    Article  Google Scholar 

  • Ho, S. C., & Szeto, W. Y. (2017). A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem. Transportation Research Part B: Methodological, 95, 340–363.

    Article  Google Scholar 

  • Kaspi, M., Raviv, T., & Tzur, M. (2014). Parking reservation policies in one-way vehicle sharing systems. Transportation Research Part B: Methodological, 62, 35–50.

    Article  Google Scholar 

  • Kaspi, M., Raviv, T., Tzur, M., & Galili, H. (2016). Regulating vehicle sharing systems through parking reservation policies: Analysis and performance bounds. European Journal of Operational Research, 251(33), 969–987.

    Article  Google Scholar 

  • Kek, A. G. H., Cheu, R. L., Meng, Q., & Fung, C. H. (2009). A decision support system for vehicle relocation operations in carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 45, 149–158.

    Article  Google Scholar 

  • Kloimüllner, C., Papazek, P., Hu, B., & Raidl, G.R. (2014). Balancing bicycle sharing systems: An approach for the dynamic case. In Evolutionary computation in combinatorial optimisation—14th European conference, EvoCOP 2014, Granada, Spain, April 23–25, 2014, Revised selected papers (pp. 73–84).

    Google Scholar 

  • Kloimüllner, C., & Raidl, G. R. (2017). Full-load route planning for balancing bike sharing systems by logic-based Benders decomposition. Networks, 69, 270–289.

    Article  Google Scholar 

  • Krumke, S. O., Quillot, A., Wagler, A. K., & Wegener, J.-T. (2013). Models and algorithms for carsharing systems and related problems. Electronic Notes in Discrete Mathematics, 44, 201–206.

    Article  Google Scholar 

  • Kumar, V. P., & Bierlaire, M. (2012). Optimizing locations for a vehicle sharing system. In Proceedings of the Swiss transport research conference (STRC) (pp. 1–30) Ascona, Switzerland.

  • Kumar, A., Teo, K. M., & Odoni, A. R. (2013). A systems perspective of cycling and bike-sharing systems in urban mobility. In 30th International Conference of the System Dynamics Society. St. Gallen, Switzerland, 22-26 July, 2012. https://ares.lids.mit.edu/fm/documents/systems_perspective2.pdf.

  • Laporte, G., Meunier, F., & Wolfler Calvo, R. (2015). Shared mobility systems. 4OR, 13, 341–360.

    Article  Google Scholar 

  • Li, X., Ma, J., Cui, J., Ghiasi, A., & Zhou, F. (2016a). Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model. Transportation Research Part B: Methodological, 88, 21–45.

    Article  Google Scholar 

  • Li, Y., Szeto, W. Y., Long, J., & Shui, C. S. (2016b). A multiple type bike repositioning problem. Transportation Research Part B: Methodological, 90, 263–278.

    Article  Google Scholar 

  • Lin, J.-R., & Yang, T.-H. (2011). Strategic design of public bicycle sharing systems with service level constraints. Transportation Research Part E: Logistics and Transportation Review, 47, 284–294.

    Article  Google Scholar 

  • Lin, J.-R., Yang, T.-H., & Chang, Y.-C. (2013). A hub location inventory model for bicycle sharing system design: Formulation and solution. Computers & Industrial Engineering, 65, 77–86.

    Article  Google Scholar 

  • Lu, C.-C. (2013). Robust multi-period fleet allocation models for bike-sharing systems. Networks and Spatial Economics, 13, 1–22.

    Article  Google Scholar 

  • Martens, K. (2007). Promoting bike-and-ride: The Dutch experience. Transportation Research Part A: Policy and Practice, 41, 326–338.

    Google Scholar 

  • Martinez, L. M., Caetano, L., Eiró, T., & Cruz, F. (2012). An optimization algorithm to establish the location of stations of a mixed fleet biking system: an application to the city of Lisbon. Procedia-Social and Behavioral Sciences, 54, 513–524.

    Article  Google Scholar 

  • Médard de Chardon, C., Caruso, G., & Thomas, I. (2016). Bike-share rebalancing strategies, patterns, and purpose. Journal of Transport Geography, 55, 22–39.

    Article  Google Scholar 

  • Meunier, F. (2014). Systèmes de véhicules partagés: des défis pour la RO. Bulletin de la ROADEF, 9–13. n\(^{\circ }\)32 - Printemps - Été 2014.

  • Midgley, P. (2011). Bicycle-sharing schemes: Enhancing sustainable mobility in urban areas. Technical report, Commission on Sustainable Development, UN, Departement of Economic and Social Affairs. Background Paper No. 8. https://sustainabledevelopment.un.org/content/dsd/resources/res_pdfs/csd-19/Background-Paper8-P.Midgley-Bicycle.pdf.

  • Nair, R., & Miller-Hooks, E. (2011). Fleet management for vehicle sharing operations. Transportation Science, 45, 524–540.

    Article  Google Scholar 

  • Nair, R., & Miller-Hooks, E. (2014). Equilibrium network design of shared-vehicle systems. European Journal of Operational Research, 235, 47–61.

    Article  Google Scholar 

  • Pal, A., & Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. Transportation Research Part C: Emerging Technologies, 80, 92–116.

    Article  Google Scholar 

  • Perboli, G., Caroleo, B., & Musso, S. (2017). Car-sharing: Current and potential members behavior analysis after the introduction of the service. In 2017 IEEE 41st annual computer software and applications conference (COMPSAC) (Vol. 2, pp. 771–776).

  • Pfrommer, J., Warrington, J., Schildbach, G., & Morari, M. (2014). Dynamic vehicle redistribution and online price incentives in shared mobility systems. IEEE Transactions on Intelligent Transportation Systems, 99, 1–12.

    Google Scholar 

  • Prékopa, A. (1990). Dual method for the solution of a one-stage stochastic programming problem with random rhs obeying a discrete probability distribution. Mathematical Methods of Operations Research, 34, 441–461.

    Article  Google Scholar 

  • Rainer-Harbach, M., Papazek, P., Raidl, G. R., Hu, B., & Kloimüllner, C. (2015). PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems. Journal of Global Optimization, 63, 597–629.

    Article  Google Scholar 

  • Raviv, T., & Kolka, O. (2013). Optimal inventory management of a bike-sharing station. IEEE Transactions, 45, 1077–1093.

    Article  Google Scholar 

  • Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: Models and solution approaches. EURO Journal on Transportation and Logistics, 2, 187–229.

    Article  Google Scholar 

  • Sayarshad, H., Tavassoli, S., & Zhao, F. (2012). Multi-periodic optimization formulation for bike planning and bike utilization. Applied Mathematical Modelling, 36, 4944–4951.

    Article  Google Scholar 

  • Schuijbroek, J., Hampshire, R. C., & van Hoeve, W.-J. (2017). Inventory rebalancing and vehicle routing in bike sharing systems. European Journal of Operational Research, 257, 992–1004.

    Article  Google Scholar 

  • Shaheen, S. A., & Cohen, A. P. (1992). Growth in worldwide carsharing an international comparison. Transportation Research Record, 81–89, 2007.

    Google Scholar 

  • Shu, J., Chou, M. C., Liu, Q., Teo, C.-P., & Wang, I.-L. (2013). Models for effective deployment and redistribution for bicycles within public bicyle-sharing systems. Operations Research, 61, 1346–1359.

    Article  Google Scholar 

  • Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., & Krause, A. (2015). Incentivizing users for balancing bike sharing systems. In Proceedings of conference on artificial intelligence (AAAI) (pp. 723–729).

  • Spiess, H., & Florian, M. (1989). Optimal strategies: A new assignment model for transit networks. Transportation Research Part B: Methodology, 23, 83–102.

    Article  Google Scholar 

  • Szeto, W. Y., Liu, Y., & Ho, S. C. (2016). Chemical reaction optimization for solving a static bike repositioning problem. Transportation Research Part D: Transport and Environment, 47, 104–135.

    Article  Google Scholar 

  • Vogel, P., Greiser, T., & Mattfeld, D. C. (2012). Understanding bike-sharing systems using data mining: Exploring activity patterns. Procedia-Social and Behavioral Sciences, 20, 514–523.

    Article  Google Scholar 

  • Vogel, P., Neumann Saavedra, B. A., & Mattfeld, D. C. (2014). A hybrid metaheuristic to solve the resource allocation problem in bike sharing systems. M. J. Blesa., C. Blum., & S. Voß (Eds.), Hybrid Metaheuristics. HM 2014. Lecture Notes in Computer Science (Vol. 8457). Cham: Springer.

    Google Scholar 

  • Waserhole, A. (2013). Vehicle sharing systems pricing optimization. Ph.D. thesis, Université de Grenoble.

  • Waserhole, A., Jost, V., & Brauner, N. (2013a). Vehicle sharing system optimization: Scenario based approach. Technical report, Université de Grenoble. \(<\)hal-00727040v4\(>\). https://hal.archivesouvertes.fr/hal-00727040v4/document.

  • Waserhole, A., Jost, V., & Brauner, N. (2013b). Vehicle sharing system pricing regulation: A fluid approximation. Technical report, Université de Grenoble. \(<\)hal-00727041v4\(>\). https://hal.archivesouvertes.fr/hal-00727041v4/document.

  • Wikipedia. (2018a). Bicycle-sharing system. Accessed April 4, 2018.

  • Wikipedia. (2018b). Carsharing. Accessed April 4, 2018.

  • Zhang, D., Yu, C., Desai, J., Lau, H. Y. K., & Srivathsan, S. (2017). A time-space network flow approach to dynamic repositioning in bicycle sharing systems. Transportation Research Part B: Methodological, 103, 188–207.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Canadian Natural Sciences and Engineering Research Council under Grant 2015-06189. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Wolfler Calvo.

Additional information

This is an updated version of the paper that appeared in 4OR, 13(4), 341–360 (2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laporte, G., Meunier, F. & Wolfler Calvo, R. Shared mobility systems: an updated survey. Ann Oper Res 271, 105–126 (2018). https://doi.org/10.1007/s10479-018-3076-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3076-8

Keywords

Navigation