Humanitarian aid delivery decisions during the early recovery phase of disaster using a discrete choice multi-attribute value method

Abstract

The humanitarian aid delivery problem associated with the early recovery phase of a disaster often incorporates multiple attributes. In this paper, the relative importance of various humanitarian aid attributes was measured using a discrete choice multi-attribute value method. This approach identifies all possible non-dominated pairs explicitly ranked by experts and provides an overall complete ranking of attributes. The performance score of each aid delivery plan was then calculated using the attributes’ ranking by solving a corresponding linear programming model. As an application study, the issues pertaining to the early recovery phase of 2017 flood in Assam, India, were analyzed. It was concluded that the ‘delivery amount’ is the most preferred attribute selected by humanitarian experts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    https://www.1000minds.com/about/how-it-works/decision-making-prioritization.

References

  1. Baron, J. (1997). Biases in the quantitative measurement of values for public decisions. Psychological Bulletin,122(1), 72–88. https://doi.org/10.1037/0033-2909.122.1.72.

    Article  Google Scholar 

  2. Centre for Research on the Epidemiology of Disasters–CRED. (2016). Emergency events database (EM-DAT). https://www.cred.be/projects/EM-DAT.publications. Accessed 10 Nov 2017.

  3. Charter, H., & Response, D. (2011). The sphere project. Response (Vol. 1). ISBN 978-1-908176-00-4.

  4. Christoplos, I. (2006). Links between relief, rehabilitation and development in the tsunami response: A synthesis of initial findings. Joint Evaluation of the Tsunami Evaluation Coalition, 5, 1–115.

    Google Scholar 

  5. De la Torre, L. E., Dolinskaya, I. S., & Smilowitz, K. R. (2012). Disaster relief routing: Integrating research and practice. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2011.06.001.

    Article  Google Scholar 

  6. Dubey, R., & Altay, N. (2018). Drivers of coordination in humanitarian relief supply chains. In G. Kovács, K. Spens, & M. Moshtari (Eds.), The Palgrave handbook of humanitarian logistics and supply chain management (pp. 297–325). London: Palgrave Macmillan.

    Google Scholar 

  7. Dubey, R., & Gunasekaran, A. (2016). The sustainable humanitarian supply chain design: Agility, adaptability and alignment. International Journal of Logistics Research and Applications,19(1), 62–82. https://doi.org/10.1080/13675567.2015.1015511.

    Article  Google Scholar 

  8. Etkin, D. (2016). An interdisciplinary approach to concepts and causes. Disaster Theory. https://doi.org/10.1016/B978-0-12-800227-8.00003-X.

    Article  Google Scholar 

  9. Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake disasters. Safety Science,35, 41–57. https://doi.org/10.1016/S0925-7535(00)00021-7.

    Article  Google Scholar 

  10. Gad-el-Hak, M. (2008). Large-scale disasters: Prediction, control, and mitigation. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511535963. ISBN 978-05-21872-93-5.

    Google Scholar 

  11. Gralla, E., Goentzel, J., & Fine, C. (2014). Assessing trade-offs among multiple objectives for humanitarian aid delivery using expert preferences. Production and Operations Management,23(6), 978–989. https://doi.org/10.1111/poms.12110.

    Article  Google Scholar 

  12. Green, P., & Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research,5(2), 103–123. https://doi.org/10.2307/2489001.

    Article  Google Scholar 

  13. Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research,252(2), 351–366. https://doi.org/10.1016/j.ejor.2015.12.035.

    Article  Google Scholar 

  14. Haghani, A., & Oh, S. C. (1996). Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations. Transportation Research Part A: Policy and Practice,30(3), 231–250. https://doi.org/10.1016/0965-8564(95)00020-8.

    Article  Google Scholar 

  15. Hansen, P., & Ombler, F. (2008). A new method for scoring additive multi-attribute value models using pairwise rankings of alternatives. Journal of Multi-Criteria Decision Analysis,15(3–4), 87–107. https://doi.org/10.1002/mcda.428.

    Article  Google Scholar 

  16. Holguin-Veras, J., Taniguchi, E., Jaller, M., Aros-Vera, F., Ferreira, F., & Thompson, R. G. (2014). The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications. Transportation Research Part A: Policy and Practice,69, 86–104. https://doi.org/10.1016/j.tra.2014.08.003.

    Article  Google Scholar 

  17. Hu, C. L., Liu, X., & Hua, Y. K. (2016). A bi-objective robust model for emergency resource allocation under uncertainty. International Journal of Production Research,54(24), 7421–7438. https://doi.org/10.1080/00207543.2016.1191692.

    Article  Google Scholar 

  18. Huang, K., Jiang, Y., Yuan, Y., & Zhao, L. (2015). Modeling multiple humanitarian objectives in emergency response to large-scale disasters. Transportation Research Part E: Logistics and Transportation Review. https://doi.org/10.1016/j.tre.2014.11.007.

    Article  Google Scholar 

  19. Huang, M., Smilowitz, K., & Balcik, B. (2012). Models for relief routing: Equity, efficiency and efficacy. Transportation Research Part E: Logistics and Transportation Review,48(1), 2–18. https://doi.org/10.1016/j.tre.2011.05.004.

    Article  Google Scholar 

  20. Huang, X., & Song, L. (2016). An emergency logistics distribution routing model for unexpected events. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2300-7.

    Article  Google Scholar 

  21. Humanitarian, T., & Group, P. (2003). HPG report. Security,10(20), 34.

    Google Scholar 

  22. Inter-Agency Group Assam. (2017). Joint needs assessment report.

  23. Jacobson, E. U., Argon, N. T., & Ziya, S. (2012). Priority assignment in emergency response. Operations Research,60(4), 813–832. https://doi.org/10.1287/opre.1120.1075.

    Article  Google Scholar 

  24. Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives–preferences and value tradeoffs. Behavioral Science. https://doi.org/10.1002/bs.3830390206.

    Article  Google Scholar 

  25. Kovács, G., & Spens, K. M. (2012). Relief supply chain management for disasters: Humanitarian aid and emergency logistics. Humanitarian Aid and Relief Supply Chain Management for Disasters. https://doi.org/10.4018/978-1-60960-824-8.ch008.

    Article  Google Scholar 

  26. Lin, Y. H., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2011). A logistics model for emergency supply of critical items in the aftermath of a disaster. Socio-Economic Planning Sciences,45(4), 132–145. https://doi.org/10.1016/j.seps.2011.04.003.

    Article  Google Scholar 

  27. Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply location and distribution in disaster management. International Journal of Production Economics,126(1), 76–84. https://doi.org/10.1016/j.ijpe.2009.10.004.

    Article  Google Scholar 

  28. Mitchell, R. C., & Carson, R. T. (2013). Using surveys to value public goods: The contingent valuation method. Rff Press.

  29. Mosel, I., & Levine, S. (2014). Remaking the case for linking relief, rehabilitation and development: How LRRD can become a practically useful concept for assistance in difficult places. HPG Commissioned Report (p. 27).

  30. Nolz, P. C., Doerner, K. F., Gutjahr, W. J., & Hartl, R. F. (2010). A bi-objective metaheuristic for disaster relief operation planning. Studies in Computational Intelligence,272, 167–187. https://doi.org/10.1007/978-3-642-11218-8_8.

    Article  Google Scholar 

  31. Ortuño, M. T., Cristóbal, P., Ferrer, J. M., Martín-Campo, F. J., Muñoz, S., Tirado, G., et al. (2013). Decision aid models and systems for humanitarian logistics. A survey. In B. Vitoriano, J. Montero, & D. Ruan (Eds.), Decision aid models for disaster management and emergencies (Vol. 7, pp. 17–44). Berlin: Springer. https://doi.org/10.2991/978-94-91216-74-9_2.

    Google Scholar 

  32. Özdamar, L., Ekinci, E., & Küçükyazici, B. (2004). Emergency logistics planning in natural disasters. Annals of Operations Research,129(1–4), 217–245. https://doi.org/10.1023/B:ANOR.0000030690.27939.39.

    Article  Google Scholar 

  33. Rath, S., & Gutjahr, W. J. (2014). A math-heuristic for the warehouse location-routing problem in disaster relief. Computers and Operations Research,42, 25–39. https://doi.org/10.1016/j.cor.2011.07.016.

    Article  Google Scholar 

  34. Sudman, S., Mitchell, R. C., & Carson, R. T. (1991). Using surveys to value public goods: The contingent valuation method. Contemporary Sociology,20(2), 243. https://doi.org/10.2307/2072944.

    Article  Google Scholar 

  35. Thomas, A. S., & Mizushima, M. (2005). Logistics training: Necessity or luxury? Forced Migration Review,22, 60–61.

    Google Scholar 

  36. Tomasini, R. M., & van Wassenhove, L. (2009). Humanitarian logistics (Vol. 38, pp. 178). INSEAD Business Press, TS-hbz Hochschulbibliothekszentrum NR. https://doi.org/10.1108/17410400910928752.

    Article  Google Scholar 

  37. Tzeng, G.-H., Cheng, H.-J., & Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E: Logistics and Transportation Review,43(6), 673–686. https://doi.org/10.1016/j.tre.2006.10.012.

    Article  Google Scholar 

  38. United Nations University. (2016). World risk report 2016—Logistics and infrastructure. World Risk Report, 74. ISBN 9783946785026.

  39. Urrea, G., Villa, S., & Gonçalves, P. (2016). Exploratory analyses of relief and development operations using social networks. Socio-Economic Planning Sciences,56, 27–39. https://doi.org/10.1016/j.seps.2016.05.001.

    Article  Google Scholar 

  40. Wang, X., Wu, Y., Liang, L., & Huang, Z. (2016). Service outsourcing and disaster response methods in a relief supply chain. Annals of Operations Research,240(2), 471–487. https://doi.org/10.1007/s10479-014-1646-y.

    Article  Google Scholar 

  41. Wash Information Management Toolkit. (2014). https://www.alnap.org/help-library/wash-information-management-toolkit. Accessed 10 Nov 2017.

  42. Weinstein, M. C., Torrance, G., & McGuire, A. (2009). QALYs: The basics. Value in health. https://doi.org/10.1111/j.1524-4733.2009.00515.x.

    Article  Google Scholar 

  43. Whitehead, S. J., & Ali, S. (2010). Health outcomes in economic evaluation: The QALY and utilities. British Medical Bulletin. https://doi.org/10.1093/bmb/ldq033.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and anonymous reviewers for their constructive comments that helped in improving the quality and presentation of this manuscript. The authors are also thankful to Dr. Shibu K. Mani, Tata Institute of Social Sciences, Mumbai Campus, for his support while conducting this study, and Professor Paul Hansen, Department of Economics, University of Otago, for granting free access to 1000minds software.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. Jana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jana, R.K., Chandra, C.P. & Tiwari, A.K. Humanitarian aid delivery decisions during the early recovery phase of disaster using a discrete choice multi-attribute value method. Ann Oper Res 283, 1211–1225 (2019). https://doi.org/10.1007/s10479-018-3074-x

Download citation

Keywords

  • Humanitarian logistics
  • Aid delivery
  • Early recovery phase
  • Pairwise comparison
  • Discrete choice method