Skip to main content
Log in

Optimization in liner shipping

  • SI: 4OR Surveys
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal, R., & Ergun, Ö. (2008). Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 42(2), 175–196.

    Article  Google Scholar 

  • Alvarez, J. F. (2009). Joint routing and deployment of a fleet of container vessels. Maritime Economics & Logistics, 11, 186–208.

    Article  Google Scholar 

  • Archetti, C., & Grazia Speranza, M. (2014). A survey on matheuristics for routing problems. EURO Journal on Computational Optimization, 2, 223–246.

    Article  Google Scholar 

  • Babonneau, F., Du Merle, O., & Vial, J.-P. (2006). Solving large-scale linear multicommodity flow problems with an active set strategy and proximal-accpm. Operations Research, 54(1), 184–197.

    Article  Google Scholar 

  • Baird, A. J. (2006). Optimising the container transhipment hub location in northern europe. Journal of Transport Teography, 14(3), 195–214.

    Article  Google Scholar 

  • Balakrishnan, A., & Karsten, C. V. (2017). Container shipping service selection and cargo routing with transshipment limits. European Journal of Operational Research, 263(2), 652–663.

    Article  Google Scholar 

  • Ball, M., Barnhart, C., & Nemhauser, G., Odoni, A. (2007). Handbooks in operations research & management science: Transportation, Vol. 14, chapter 1: Air Transportation - Irregular Operations and Control. Elseview.

  • Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

    Article  Google Scholar 

  • Besbes, O., & Savin, S. (2009). Going bunkers: The joint route selection and refueling problem. Manufacturing and Service Operations Management, 11, 694–711.

    Article  Google Scholar 

  • Bixby, R.E. (2012). A brief history of linear and mixed-integer programming computation. Documenta Mathematica Optimization Stories, 107–121.

  • Brouer B. D., Karsten, C. V., & Pisinger, D. (2016). Big data optimization in maritime logistics. In Ali Emrouznejad, (Ed.), Big data optimization: Recent developments and challenges, Vol. 18 of Studies in big data (pp. 319–344). New York: Springer

    Google Scholar 

  • Brouer, B.D., Pisinger, D., & Spoorendonk, S. (2011). Liner shipping cargo allocation with repositioning of empty containers. INFOR: Information Systems and Operational Research, 49, 109–124

    Google Scholar 

  • Brouer, B. D., Dirksen, J., Pisinger, D., Plum, C. E. M., & Vaaben, B. (2013). The vessel schedule recovery problem (VSRP) a MIP model for handling disruptions in liner shipping. European Journal of Operational Research, 224, 362–374.

    Article  Google Scholar 

  • Brouer, B. D., Álvarez, J. F., Plum, C. E. M., Pisinger, D., & Sigurd, M. M. (2014a). A base integer programming model and benchmark suite for liner-shipping network design. Transportation Science, 48(2), 281–312.

    Article  Google Scholar 

  • Brouer, B. D., Desaulniers, G., & Pisinger, D. (2014b). A matheuristic for the liner shipping network design problem. Transportation Research Part E: Logistics and Transportation Review, 72, 42–59.

    Article  Google Scholar 

  • Brouer, B. D., Karsten, C. V., & Pisinger, D. (2017). Optimization in liner shipping. 4OR, 15, 1–35.

  • Burke, E. K., & Kendall, G. (2014). Search methodologies: Introductory tutorials in optimization and decision support techniques. New York: Springer.

    Book  Google Scholar 

  • Christiansen, M., Fagerholt, K., Nygreen, B., & Ronen, D. (2013). Ship routing and scheduling in the new millennium. European Journal of Operational Research, 228(3), 467–483.

    Article  Google Scholar 

  • Clausen, J., Larsen, A., Larsen, J., & Rezanova, N. J. (2010). Disruption management in the airline industry-concepts, models and methods. Computers and Operations Research, 37(5), 809–821.

    Article  Google Scholar 

  • James, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D: Transport and Environment, 14(8), 593–598.

    Article  Google Scholar 

  • Costa, A. M. (2005). A survey on benders decomposition applied to fixed-charge network design problems. Computers & Operations Research, 32(6), 1429–1450.

    Article  Google Scholar 

  • Delgado, A., Jensen, R. M., Janstrup, K., Rose, T. H., & Andersen, K. H. (2012). A constraint programming model for fast optimal stowage of container vessel bays. European Journal of Operational Research, 220(1), 251–261.

    Article  Google Scholar 

  • Desrosiers, J., & Lübbecke, M. E. (2005). A primer in column generation. New York: Springer.

    Book  Google Scholar 

  • Epstein, R., Neely, A., & Weintraub, A. (2012). A strategic empty container logistics optimization in a major shipping company. Interfaces, 42(1), 5–16.

    Article  Google Scholar 

  • Erera, A. L., Morales, J. C., & Savelsbergh, M. (2005). Global intermodal tank container management for the chemical industry. Transportation Research Part E, 41(6), 551–566.

    Article  Google Scholar 

  • Fagerholt, K. (1999). Optimal fleet design in a ship routing problem. International Transactions in Operational Research, 6(5), 453–464.

    Article  Google Scholar 

  • Fagerholt, K., & Psaraftis, H. N. (2015). On two speed optimization problems for ships that sail in and out of emission control areas. Transportation Research Part D: Transport and Environment, 39, 56–64.

    Article  Google Scholar 

  • Fagerholt, K., Laporte, G., & Norstad, I. (2010). Reducing fuel emissions by optimizing speed on shipping routes. Journal of the Operational Research Society, 61(3), 523–529.

    Article  Google Scholar 

  • Gatica, R. A., & Miranda, P. A. (2011). Special issue on latin-american research: A time based discretization approach for ship routing and scheduling with variable speed. Networks and Spatial Economics, 11(3), 465–485.

    Article  Google Scholar 

  • Gelareh, S., & Meng, Q. (2010). A novel modeling approach for the fleet deployment problem within a short-term planning horizon. Transportation Research Part E: Logistics and Transportation Review, 46(1), 76–89.

    Article  Google Scholar 

  • Gelareh, S., Nickel, S., & Pisinger, D. (2010). Liner shipping hub network design in a competitive environment. Transportation Research Part E: Logistics and Transportation Review, 46(6), 991–1004.

    Article  Google Scholar 

  • Gendreau, M., & Potvin, J.-Y. (2010). Handbook of metaheuristics (Vol. 2). New York: Springer.

    Book  Google Scholar 

  • Joerss, M., Murnane, J., Saxon, S., & Widdows, R. (2015). Landside operations: The next frontier for container-shipping alliances. Technical report. New York: McKinsey & Company.

    Google Scholar 

  • Karsten, C. V., Pisinger, D., Brouer, B. D., & Desaulniers, G. (2016). Time constrained liner shipping network design. Transportation Research Part E: Coordination and Control in Transport Logistics,. https://doi.org/10.1016/j.tre.2016.03.010.

    Article  Google Scholar 

  • Karsten, C. V., Brouer, B. D., & Pisinger, D. (2017). Competitive liner shipping network design. Computers & Operations Research, 87, 125–136.

    Article  Google Scholar 

  • Karsten, C. V., Pisinger, D., & Ropke, S. (2015a). Simultaneous optimization of container ship sailing speed and container routing with transit time restrictions. Transportation Science. https://doi.org/10.1287/trsc.2018.0818.

    Article  Google Scholar 

  • Karsten, C. V., Pisinger, D., Ropke, S., & Brouer, B. D. (2015b). The time constrained multi-commodity network flow problem and its application to liner shipping network design. Transportation Research Part E: Logistics and Transportation Review, 76, 122–138.

    Article  Google Scholar 

  • Kim, H.-J., Chang, Y.-T., Kim, K.-T., & Kim, H.-J. (2012). An epsilon-optimal algorithm considering greenhouse gas emissions for the management of a ships bunker fuel. Transportation Research Part D: Transport and Environment, 17, 97–103.

    Article  Google Scholar 

  • Kim, H. J. (2013). A lagrangian heuristic for determining the speed and bunkering port of a ship. Journal of the Operational Research Society, 65(5), 747–754.

    Article  Google Scholar 

  • Kjeldsen, K. H. (2011). Classification of ship routing and scheduling problems in liner shipping. INFOR: Information Systems and Operational Research, 49(2), 139–152.

    Google Scholar 

  • Laporte, G., Toth, P., & Vigo, D. (2013). Vehicle routing: Historical perspective and recent contributions. EURO Journal on Transportation and Logistics, 2(1–2), 1–4.

    Article  Google Scholar 

  • Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.

    Article  Google Scholar 

  • Meng, Q., & Wang, S. (2011a). Liner shipping service network design with empty container repositioning. Transportation Research Part E: Logistics and Transportation Review, 47(5), 695–708.

    Article  Google Scholar 

  • Meng, Q., & Wang, S. (2011b). Optimal operating strategy for a long-haul liner service route. European Journal of Operational Research, 215(1), 105–114.

    Article  Google Scholar 

  • Meng, Q., Wang, S., Andersson, H., & Thun, K. (2014). Containership routing and scheduling in liner shipping: Overview and future research directions. Transportation Science, 48(2), 265–280.

    Article  Google Scholar 

  • Mulder, J., Dekker, R., & Sharifyazdi, M. (2012). Designing robust liner shipping schedules: Optimizing recovery actions and buffer times. Report/Econometric Institute, Erasmus University Rotterdam. http://hdl.handle.net/1765/38636.

  • Norstad, I., Fagerholt, K., & Laporte, G. (2011). Tramp ship routing and scheduling with speed optimization. Transportation Research Part C: Emerging Technologies, 19(5), 853–865.

    Article  Google Scholar 

  • Notteboom, T. E. (2006). The time factor in liner shipping services. Maritime Economics & Logistics, 8(1), 19–39.

    Article  Google Scholar 

  • Notteboom, T. E., & Rodrigue, J.-P. (2008). Containerisation, box logistics and global supply chains: The integration of ports and liner shipping networks. Maritime Economics & Logistics, 10(1), 152–174.

    Article  Google Scholar 

  • Notteboom, T. E., & Vernimmen, B. (2009). The effect of high fuel costs on liner service configuration in container shipping. Journal of Transport Geography, 17(5), 325–337.

    Article  Google Scholar 

  • Pacino, D. (2012). Fast generation of container vessel stowage plans. Ph. D. Thesis, IT University of Copenhagen, 2012.

  • Pacino, D., & Jensen, R. M. (2012). Constraint-based local search for container stowage slot planning. Lecture Notes in Engineering and Computer Science, 2, 1467–1472.

    Google Scholar 

  • Pacino, D., & Jensen, R. M. (2013). Fast slot planning using constraint-based local search. IAENG Transactions on Engineering Technologies, 186, 49–63.

    Article  Google Scholar 

  • Pacino, D., Delgado, A., Jensen, R. M., & Bebbington, T. (2011). Fast generation of near-optimal plans for eco-efficient stowage of large container vessels. Computational Logistics, 6971, 286–301.

    Article  Google Scholar 

  • Pisinger, D. (2016). Liner shipping network design—A new decomposition. In 28th European Conference on Operational Research.

  • Plum, C. E. M., & Jensen, P. N. (2007). Minimization of bunker costs. Master thesis, University of Copenhagen.

  • Plum, C. E. M., Pisinger, D., & Sigurd, M. M. (2014). A service flow model for the liner shipping network design problem. European Journal of Operational Research, 235(2), 378–386.

    Article  Google Scholar 

  • Plum, C. E. M., Pisinger, D., & Jensen, P. N. (2015). Bunker purchasing in liner shipping. In Handbook of ocean container transport logistics (vol. XVII, pp. 251–278). New York: Springer.

    Google Scholar 

  • Rana, K., & Vickson, R. G. (1991). Routing container ships using lagrangean relaxation and decomposition. Transportation Science, 25(3), 201–214.

    Article  Google Scholar 

  • Reinhardt, L. B., & Pisinger, D. (2012). A branch and cut algorithm for the container shipping network design problem. Flexible Services and Manufacturing Journal, 24(3), 349–374.

    Article  Google Scholar 

  • Reinhardt, L. B., Pisinger, D., Spoorendonk, S., & Sigurd, M. M. (2016). Optimization of the drayage problem using exact methods. INFOR: Information Systems and Operational Research, 54, 1–19.

    Google Scholar 

  • Reinhardt, L. B., Plum, C. E. M., Pisinger, D., Sigurd, M. M., & Vial, G. T. P. (2016b). The liner shipping berth scheduling problem with transit times. Transportation Research Part E: Logistics and Transportation Review, 86, 116–128.

    Article  Google Scholar 

  • Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216.

    Article  Google Scholar 

  • Rossi, F., Van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. New York: Elsevier.

    Google Scholar 

  • Sheng, X., Lee, L., & Chew, E. (2014). Dynamic determination of vessel speed and selection of bunkering ports for liner shipping under stochastic environment. OR Spectrum, 36(2), 455–480.

    Article  Google Scholar 

  • Shintani, K., Imai, A., Nishimura, E., & Papadimitriou, S. (2007). The container shipping network design problem with empty container repositioning. Transportation Research Part E: Logistics and Transportation Review, 43(1), 39–59.

    Article  Google Scholar 

  • Song, D.-P., & Dong, J.-X. (2012). Cargo routing and empty container repositioning in multiple shipping service routes. Transportation Research Part B: Methodological, 46(10), 1556–1575.

    Article  Google Scholar 

  • Song, D. P., & Dong, J. X. (2015). Empty container repositioning. In C.-Y. Lee & Q. Meng (Eds.), Handbook of ocean container transport logistics – making global supply chain effective (pp. 163–208). New York: Springer.

    Google Scholar 

  • Tierney, K., Askelsdottir, B., Jensen, R. M., & Pisinger, D. (2014). Solving the liner shipping fleet repositioning problem with cargo flows. Transportation Science, 9, 652–674.

    Google Scholar 

  • Vielma, J. P. (2015). Mixed integer linear programming formulation techniques. SIAM Review, 57, 3–57.

    Article  Google Scholar 

  • Wang, Shuaian, & Meng, Qiang. (2012). Sailing speed optimization for container ships in a liner shipping network. Transportation Research Part E: Logistics and Transportation Review, 48(3), 701–714.

    Article  Google Scholar 

  • Wang, X., & Teo, C. C. (2013). Integrated hedging and network planning for container shipping’s bunker fuel management. Maritime Economics & Logistics, 15, 172–196.

    Article  Google Scholar 

  • Wen, M., Ropke, S., Petersen, H. L., Larsen, R., & Madsen, O. B. G. (2016). Full-shipload tramp ship routing and scheduling with variable speeds. Computers & Operations Research, 70, 1–8.

    Article  Google Scholar 

  • Yao, Z., Ng, S. H., & Lee, L. H. (2012). A study on bunker fuel management for the shipping liner services. Computers and Operations Research, 39, 1160–1172.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Danish Strategic Research Council for having supported the projects ENERPLAN and GREENSHIP, and the Danish Maritime Fund for having supported the project Competitive Liner Shipping Network Design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pisinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouer, B.D., Karsten, C.V. & Pisinger, D. Optimization in liner shipping. Ann Oper Res 271, 205–236 (2018). https://doi.org/10.1007/s10479-018-3023-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3023-8

Keywords

Navigation