Advertisement

New algorithms for minimizing the weighted number of tardy jobs on a single machine

  • Danny Hermelin
  • Shlomo Karhi
  • Michael Pinedo
  • Dvir Shabtay
S.I.: CoDIT2017-Combinatorial Optimization

Abstract

In this paper we study the classical single machine scheduling problem where the objective is to minimize the weighted number of tardy jobs. Our analysis focuses on the case where one or more of three natural parameters is either constant or is taken as a parameter in the sense of parameterized complexity. These three parameters are the number of different due dates, processing times, and weights in our set of input jobs. We show that the problem belongs to the class of fixed parameter tractable (FPT) problems when combining any two of these three parameters. We also show that the problem is polynomial-time solvable when either one of the latter two parameters are constant, complementing Karp’s result who showed that the problem is NP-hard already for a single due date.

Keywords

Single machine scheduling Weighted number of tardy jobs Fixed parametrized tractability NP-hard Polynomial time algorithms 

References

  1. Adamu, M. O., & Adewumi, A. (2014). Single machine scheduling to minimize weighted number of tardy jobs. Journal of Industrial and Management Optimization, 10(3), 219–241.Google Scholar
  2. Bodlaender, H. L., & Fellows, M. R. (1995). W[2]-hardness of precedence constrained k-processor scheduling. Operations Research Letters, 18(2), 93–97.CrossRefGoogle Scholar
  3. Brucker, P., & Kravchenko, S. A. (2006). Scheduling equal processing time jobs to minimize the weighted number of late jobs. Journal of Mathematical Modelling and Algorithms, 5(2), 143–165.CrossRefGoogle Scholar
  4. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., & Widmayer, P. (2004). Scheduling with release times and deadlines on a minimum number of machines. In J. J. Levy, E. W. Mayr, & J. C. Mitchell (Eds.), Exploring new frontiers of theoretical informatics (pp. 209–222). New York, NY: Springer.CrossRefGoogle Scholar
  5. Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., et al. (2015). Parameterized algorithms. Cham: Springer.CrossRefGoogle Scholar
  6. Dadush, D., Peikert, C., & Vempala, S. (2011). Enumerative lattice algorithms in any norm via m-ellipsoid coverings. In IEEE 52nd annual symposium on foundations of computer science (FOCS) (pp. 580–589).Google Scholar
  7. Dauzère-Pérès, S., & Sevaux, M. (2004). An exact method to minimize the number of tardy jobs in single machine scheduling. Journal of Scheduling, 7(6), 405–420.CrossRefGoogle Scholar
  8. Downey, R. G., & Fellows, M. R. (1992). Fixed-parameter intractability. In Proceedings of the 7th annual structure in complexity theory conference (COCO ’92) (pp. 36–49).Google Scholar
  9. Downey, R. G., & Fellows, M. R. (1999). Parameterized complexity. New York, NY: Springer.CrossRefGoogle Scholar
  10. Fellows, M. R., & McCartin, C. (2003). On the parametric complexity of schedules to minimize tardy tasks. Theoretical Computer Science, 298(2), 317–324.CrossRefGoogle Scholar
  11. Flum, J., & Grohe, M. (1998). Parameterized complexity theory. Berlin: Springer.Google Scholar
  12. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York, NY: Freeman.Google Scholar
  13. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 3, 287–326.CrossRefGoogle Scholar
  14. Hermelin, D., Kubitza, J. M., Shabtay, D., Talmon, N., & Woeginger, G. (2015). Scheduling two competing agents when one agent has significantly fewer jobs. In Proceedings of the 10th international symposium on parameterized and exact computation (IPEC) (pp. 55–65).Google Scholar
  15. Karp, R. M. (1972). Reducibility among combinatorial problems. In R.E. Miller & J.W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103).Google Scholar
  16. Knop, D., & Koutecký, M. (2018). Scheduling meets n-fold integer programming. Journal of Scheduling,.  https://doi.org/10.1007/s10951-017-0550-0.Google Scholar
  17. Lawler, E. L., & Moore, J. M. (1969). A functional equation and its application to resource allocation and sequencing problems. Management Science, 16(1), 77–84.CrossRefGoogle Scholar
  18. Lenstra, H. L. (1983). Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4), 538–548.CrossRefGoogle Scholar
  19. Lenté, C., Liedloff, M., Soukhal, A., & T’Kindt, V. (2013). On an extension of the sort and search method with application to scheduling theory. Theoretical Computer Science, 511, 13–22.CrossRefGoogle Scholar
  20. M’Hallah, R., & Bulfin, R. L. (2003). Minimizing the weighted number of tardy jobs on a single machine. European Journal of Operational Research, 145(1), 45–56.CrossRefGoogle Scholar
  21. Micciancio, D., & Voulgaris, P. (2010). A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In Proceedings of the 42nd ACM symposium on theory of computing (STOC) (pp. 351–358).Google Scholar
  22. Mnich, M., & van Bevern, R. (2017). Parameterized complexity of machine scheduling: 15 open problems. CoRR, arxiv: 1709.01670. Accessed 4 Jan 2018.
  23. Mnich, M., & Wiese, A. (2015). Scheduling and fixed-parameter tractability. Mathematical Programming, 154(1), 533–562.CrossRefGoogle Scholar
  24. Moore, J. M. (1968). An \(n\) job, one machine sequencing algorithm for minimizing the number of late jobs. Management Science, 15, 102–109.CrossRefGoogle Scholar
  25. Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford: Oxford Univerity Press.CrossRefGoogle Scholar
  26. Peha, J. M. (1995). Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time. Computers and Operations Research, 22(10), 1089–1100.CrossRefGoogle Scholar
  27. Sahni, S. K. (1976). Algorithms for scheduling independent tasks. Journal of the ACM, 23(1), 116–127.CrossRefGoogle Scholar
  28. Tang, G. (1990). A new branch and bound algorithm for minimizing the weighted number of tardy jobs. Annals of Operations Research, 24(1), 225–232.CrossRefGoogle Scholar
  29. van Bevern, R., & Pyatkin, A. V. (2016). Completing partial schedules for open shop with unit processing times and routing. In Proc. of the 11th international computer science symposium in Russia (CSR) (pp. 73–87).Google Scholar
  30. van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., & Woeginger, G. J. (2016). Precedence-constrained scheduling problems parameterized by partial order width. In Proc. of the 9th international conference on discrete optimization and operations research (DOOR) (pp. 105–120).Google Scholar
  31. van Bevern, R., Niedermeier, R., & Suchỳ, O. (2017). A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: Few machines, small looseness, and small slack. Journal of Scheduling, 20(3), 255–265.CrossRefGoogle Scholar
  32. Villarreal, F. J., & Bulfin, R. L. (1983). Scheduling a single machine to minimize the weighted number of tardy jobs. AIIE Transactions, 15(4), 337–343.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Engineering and ManagementBen-Gurion UniversityBeer-ShevaIsrael
  2. 2.Department of ManagementBar-Ilan UniversityRamat GanIsrael
  3. 3.Stern School of BusinessNew York UniversityNew YorkUSA

Personalised recommendations