Computing stock price comovements with a three-regime panel smooth transition error correction model

  • Fredj Jawadi
  • Souhir Chlibi
  • Abdoulkarim Idi Cheffou
Original Research
  • 7 Downloads

Abstract

This paper studies the hypothesis of stock price comovements toward the US market for a large sample of developed and emerging stock markets (G6, BRICS, and MENA) over the periods of February 1970–June 2012, January 1995–June 2012, and June 2005–June 2012. To consider cross-market heterogeneity and asymmetrical time-variation in stock market integration, we propose an innovative threshold panel cointegration specification based on a panel smooth transitions error correction model. This specification enables us to identify different integration regimes that transit smoothly, which further reproduces the effects of market frictions and behavioral heterogeneity among the markets under consideration. Accordingly, we distinguish between efficient and inefficient market states. Further, we show that, while MENA and BRICS are segmented with the US market, a nonlinear mean-reversion of stock prices is observed for the G6 markets, suggesting evidence of heterogeneous threshold market integration. This suggests global diversification benefits from a US-MENA portfolio, while only per-regime investment opportunities appear for US-G6 and US-BRICS portfolios.

Keywords

Comovement Developed and emerging stock markets Nonlinearity Multiple regimes PSTECM 

JEL Classification

C2 G15 

References

  1. Akerlof, G. A., & Shiller, R. (2010). Animal spirits how human psychology drives the economy, and why it matters for global capitalism. Princeton.Google Scholar
  2. Arouri, M. E. H., & Jawadi, F. (2010). Nonlinear stock market integration in emerging countries. International Journal of Economics and Finance, 2(5), 79–90.Google Scholar
  3. Balke, N. S., & Fomby, T. B. (1997). Threshold cointegration. International Economic Review, 38(3), 627–645.CrossRefGoogle Scholar
  4. Bekaert, G., & Harvey, C. (1995). Time varying world market integration. Journal of Finance, 50(2), 403–444.CrossRefGoogle Scholar
  5. Ben Ameur, H., Jawadi, F., & Louhichi, W. (2016). Measurement errors in stock markets. Annals of Operations Research.  https://doi.org/10.1007/s10479-016-2138-z.Google Scholar
  6. Béreau, S., Villavicencio, A. L., & Mignon, V. (2010). Nonlinear adjustment of the real exchange rate towards its equilibrium value: A panel smooth transition error correction modeling. Economic Modelling, 27(1), 404–416.CrossRefGoogle Scholar
  7. Boswijk, H. P., Hommes, C. H., & Manzan, S. (2007). Behavioral heterogeneity in stock prices. Journal of Economic Dynamics and Control, 31(6), 1938–1970.CrossRefGoogle Scholar
  8. Boubaker, H., & Sghaier, N. (2014). How do the interest rate and the inflation rate affect the non-life insurance premiums? Working Paper, IPAG Business School, 2014-282.Google Scholar
  9. Chen, J., & Quang, T. (2014). The impact of international financial integration on economic growth: New evidence on threshold effect. Economic Modelling, 42, 475–489.CrossRefGoogle Scholar
  10. Chlibi, S., Jawadi, F., & Sellami, M. (2015). Analyzing heterogeneous stock price comovements through hybrid approaches. Open Economies Review, 27(3), 541–559.CrossRefGoogle Scholar
  11. Chlibi, S., Jawadi, F., & Sellami, M. (2016). Modeling threshold effects in stock price co-movements: a vector nonlinear cointegration approach.  https://doi.org/10.1515/snde-2016-0049.Google Scholar
  12. Engle, R. F., & Granger, C. W. J. (1987). Cointegration and error correction: Representation, estimation and testing. Econometrica., 55(2), 251–276.CrossRefGoogle Scholar
  13. González, A., Teräsvirta, T., & van Dijk, D. (2005). Panel smooth transition regression model. SSE/EFI Working Paper Series in Economics and Finance, 604, Stockholm School of Economics.Google Scholar
  14. Hadri, K. (2000). Testing for unit roots in heterogeneous panel data. Econometrics Journal, 3(2), 148–161.CrossRefGoogle Scholar
  15. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and business cycle. Econometrica, 57(2), 357–384.CrossRefGoogle Scholar
  16. Hansen, B. E. (1999). Threshold effects in non-dynamic panels: estimation, testing, and inference. Journal of Econometrics, 93, 334–368.CrossRefGoogle Scholar
  17. Hansen, B. E., & Seo, B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics, 110, 293–318.CrossRefGoogle Scholar
  18. Hinich, M. J. (1996). Testing for dependence in the input to a linear time series model. Journal of Nonparametric Statistics, 6(2–3), 205–221.CrossRefGoogle Scholar
  19. Im, K., Pesaran, M., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74.CrossRefGoogle Scholar
  20. Jawadi, F. (2009). Threshold stock price adjustment. In J. M. Binner, D. L. Edgerton, T. Elger (Eds.), Advances in Econometrics, vol. 24 (pp. 183–198). Emerald Group Publishing Limited.Google Scholar
  21. Jawadi, F., & Prat, G. (2012). Arbitrage costs and nonlinear stock price adjustment in the G7 countries. Applied Economics, 44(12), 1561–1582.CrossRefGoogle Scholar
  22. Jawadi, F., & Prat, G. (2016). Equity prices and fundamentals: A DDM-APT mixed approach. Review of Quantitative Finance and Accounting, 49(3), 661–695.CrossRefGoogle Scholar
  23. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254.CrossRefGoogle Scholar
  24. Koedijk, K. C. G., Tims, B., & van Dijk, M. A. (2010). Why panel tests of purchasing power parity should allow for heterogeneous mean reversion. Journal of International Money and Finance, 30(1), 246–267.CrossRefGoogle Scholar
  25. Levin, A., Lin, C., & Chu, C. (2002). Unit root test in panel data: Asymptotic and finite sample properties. Journal of Econometrics, 108(1), 1–24.CrossRefGoogle Scholar
  26. Lukkonen, R., Saikkonen, P., & Teräsvirta, T. (1988). Testing linearity against smooth transition autoregressive models. Biometrika, 75(3), 491–499.CrossRefGoogle Scholar
  27. Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.Google Scholar
  28. Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics & Statistics, 61, 653–670.CrossRefGoogle Scholar
  29. Pedroni, P. (2004). Panel cointegration, asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory, 20(3), 597–625.CrossRefGoogle Scholar
  30. Romero-Meza, R., Bonilla, C., Benedetti, H., & Sertelis, A. (2015). Nonlinearities and financial contagion in Latin American stock markets. Economic Modelling, 51, 653–656.CrossRefGoogle Scholar
  31. Saikkonen, P. (1991). Asymptotically efficient estimation of cointegrating regressions. Econometric Theory, 7(1), 1–21.CrossRefGoogle Scholar
  32. Stock, J., & Watson, M. (1993). A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica, 61(4), 783–820.CrossRefGoogle Scholar
  33. Teräsvirta, T., & Anderson, H. (1992). Characterizing nonlinearities in business cycles using Smooth Transition Auto Regressive models. Journal of Applied Econometrics, 7(S1), 119–139.CrossRefGoogle Scholar
  34. Teräsvirta, T., & Yang, Y. (2014). Linearity and Misspecification Tests for Vector Smooth Transition Regression Models. Research Papers: CREATES, Aarhus University.Google Scholar
  35. Tong, H., & Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, 42(3), 245–292.Google Scholar
  36. Van Dijk, D., Teräsvirta, T., & Franses, P. (2002). Smooth transition auto-regressive models: A survey of recent developments. Econometrics Review, 21(1), 1–47.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAREQUADUniversity of Tunis El ManarTunisTunisia
  2. 2.University of EvryEvryFrance
  3. 3.EDC Paris Business SchoolParisFrance

Personalised recommendations