Skip to main content

Advertisement

Log in

Robust multiobjective optimization with application to Internet routing

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Robust optimization addressing decision making under uncertainty has been very well developed for problems with a single objective function and applied to areas of human activity such as portfolio selection, investment decisions, signal processing, and telecommunication-network planning. As these decision problems typically have several decisions or goals, we extend robust single objective optimization to the multiobjective case. The column-wise uncertainty model can be carried over to the multiobjective case without any additional assumptions. For the row-wise uncertainty model, we show under additional assumptions that robust efficient solutions are efficient to specific instance problems and can be found as the efficient solutions of another deterministic problem. Being motivated by the fact that Internet traffic must be maintained in a reliable yet affordable manner in situations of complex and dynamic usage, we apply the row-wise model to an intradomain multiobjective routing problem with polyhedral traffic uncertainty. We consider traditional objective functions corresponding to link utilizations and implement the biobjective case using the parametric simplex algorithm to compute robust efficient routings. We also present computational results for the Abilene network and analyze their meaning in the context of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Optical Carrier with a data rate of 9953.28 Mbit/s, that is, 10 Gbit/s.

  2. Optical Carrier with a data rate of 2488.32 Mbit/s, that is, 2.5 Gbit/s.

References

  • Abilene Backbone Network. (2003). Internet2. http://www.internet2.edu/

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Applegate, D., & Cohen, E. (2003). Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamentals tradeoffs. In SIGCOMM’03 (pp. 313–324).

  • Altin, A., Belotti, P., & Pinar, M. Ç. (2010). OSPF routing with optimal oblivious performance ratio under polyhedral demand uncertainty. Optimization and Engineering, 11(3), 395–422.

    Article  Google Scholar 

  • Awduche, D. (1999). MPLS and traffic engineering in IP networks. In IEEE communications magazine (pp. 42–47).

    Article  Google Scholar 

  • Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., & McManus, J. (1999). Requirements for traffic engineering over MPLS. Internet Engineering Task Force, Request for Comments 2702. http://www.ietf.org/rfc/rfc2702.

  • Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and algorithms. New York: Wiley.

    Google Scholar 

  • Belotti, P., & Pinar, M. Ç. (2008). Optimal oblivious routing under linear and ellipsoidal uncertainty. Optimization and Engineering, 9, 257–271.

    Article  Google Scholar 

  • Ben-Ameur, W. (2007). Between fully dynamic routing and robust stable routing. In Proceedings of DRCN.

  • Ben-Ameur, W., & Gourdin, E. (2003). Internet routing and related topology issues. SIAM Journal on Discrete Mathematics, 17, 18–49.

    Article  Google Scholar 

  • Ben-Ameur, W., & Kerivin, H. (2003). New economical virtual private networks. Communications of the ACM, 46, 69–73.

    Article  Google Scholar 

  • Ben-Ameur, W., & Kerivin, H. (2005). Routing of uncertain traffic demands. Optimization and Engineering, 6, 283–313.

    Article  Google Scholar 

  • Ben-Ameur, W., & Kerivin, H. (2007). Method and system for determining the parameters of a data transmission network for creating, in that network, a virtual private network. European Patent EP1355449 (issued on February 28, 2007).

  • Ben-Ameur, W., Ouorou, A., & Zotkiewicz, M. (2012). Robust routing in communication networks. In R. Mahjoub (Ed.), Progress in Combinatorial Optimization (pp. 353–389). New York: Iste & Wiley.

    Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton, NJ: Princeton Academic Press.

    Book  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23, 769–805.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25, 1–13.

    Article  Google Scholar 

  • Bertsimas, D., Brown, D., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464–501.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2006). Tractable approximations to robust conic optimization problems. Mathematical Programming, 107, 5–36.

    Article  Google Scholar 

  • Bokrantz, R., & Fredriksson, A. (2014). Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization. Preprint, arXiv:1308.4616.

  • Casas, P. (2010). Statistical analysis of network traffic for anomaly detection and quality of service provisioning. Ph.D. Thesis, École Nationale Supérieure des Télécommunications de Bretagne, Brest, France.

  • Casas, P., Larroca, F., & Vaton, S. (2009). Robust routing mechanism for intradomain traffic engineering in dynamic networks. In Proceedings of Latin American network operations and management symposium (LANOMS) (pp. 23–32).

  • Chekuri, C., Oriolo, G., Scutellá, M. G., & Shepherd, F. B. (2007). Hardness of robust network design. Networks, 50(1), 50–54.

    Article  Google Scholar 

  • Choo, E. U., Schoner, B., & Wedley, W. C. (1999). Interpretation of criteria weights in multicriteria decision making. Computers and Industrial Engineering, 37(3), 527–541.

    Article  Google Scholar 

  • Dantzig, G. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Dauer, J. (1987). Analysis of the objective space in multiple objective linear programming. Journal of Mathematical Analysis and Applications, 125(2), 579–593.

    Article  Google Scholar 

  • Deb, K., & Gupta, H. (2005). Searching for robust Pareto-optimal solutions in multi-objective optimization. In C. A. Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), Evolutionary multi-criterion optimization (pp. 150–164). Berlin: Springer.

    Chapter  Google Scholar 

  • Deb, K., & Gupta, H. (2006). Introducing robustness in multi-objective optimization. Evolutionary Computation, 14(4), 463–494.

    Article  Google Scholar 

  • Dellnitz, M., & Witting, K. (2009). Computation of robust Pareto points. International Journal of Computing Science and Mathematics, 2(3), 243–266.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., Ide, J., & Schöbel, A. (2014). Minmax robustness for multiobjective optimization problems. European Journal of Operations Research, 239, 17–31.

    Article  Google Scholar 

  • El-Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-square problems to uncertain data matrices. SIAM Journal on Matrix Analysis and Applications, 18, 1035–1064.

    Article  Google Scholar 

  • Eskelinen, P., & Miettinen, K. (2012). Trade-off analysis approach for interactive nonlinear multiobjective optimization. OR Spectrum, 34, 803–816.

    Article  Google Scholar 

  • Feldmann, A., & Rexford, J. (2001). IP network configuration for intradomain traffic engineering. IEEE Network, 15, 46–57.

    Article  Google Scholar 

  • Fiacco, A. (1983). Introduction to sensitivity and stability analysis in nonlinear programming. volume 165 of Mathematics in Science and Engineering, Cambridge: Academic Press.

  • Fliege, J., & Werner, R. (2014). Robust multiobjective optimization and applications in portfolio optimization. European Journal of Operations Research, 234, 422–433.

    Article  Google Scholar 

  • Fortz, B., & Thorup, M. (2000). Internet traffic engineering by optimizing OSPF weights. Proceedings of IEEE INFOCOM, 2000, 519–528.

    Google Scholar 

  • Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22(3), 618–630.

    Article  Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2015). Robust solutions to multi-objective linear programs with uncertain data. European Journal of Operational Research, 242(3), 730–743.

    Article  Google Scholar 

  • Gunnar, A., & Johansson, M. (2011). Robust load balancing under traffic uncertainty–tractable models and efficient algorithms. Telecommunication Systems, 48(1–2), 93–107.

    Article  Google Scholar 

  • Hijazi, H., Bonami, P., & Ouorou, A. (2013). Robust delay-constrained routing in telecommunications. Annals of Operations Research, 206(1), 163–181.

    Article  Google Scholar 

  • Hu, J., & Mehrotra, S. (2012). Robust and stochastically weighted multiobjective optimization models and reformulations. Operations Research, 60(4), 936–953.

    Article  Google Scholar 

  • Iancu, D. A., & Trichakis, N. (2013). nondominated efficiency in robust optimization. Management Science, 60(1), 130–147.

    Article  Google Scholar 

  • IBM ILOG CPLEX Optimizer. (2012). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

  • Ide, J., & Schöbel, A. (2015). Robustness for uncertain multi-objective optimization: A survey and analysis of different concepts. OR Spectrum, 38(1), 235–271.

    Article  Google Scholar 

  • Isermann, H. (1974). Proper efficiency and the linear vector maximum problem. Operations Research, 22(1), 189–191.

    Article  Google Scholar 

  • Klamroth, K., Köbis, E., Schöbel, A., & Tammer, C. (2013). A unified approach for different concepts of robustness and stochastic programming via non-linear scalarizing functionals. Optimization, 62(5), 649–671.

    Article  Google Scholar 

  • Köbis, E., & Tammer, C. (2012). Relations between strictly robust optimization problems and a nonlinear scalarization method. AIP Conference Proceedings, 1479, 2371–2374.

    Article  Google Scholar 

  • Kodialam, M., Lakshman, T. V., & Sengupta, S. (2006). Maximum throughput routing of traffic in the hose model. In Proceedings of INFOCOM, 25th IEEE international conference on computer communications (pp. 1–11).

  • Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its application. Boston, MA: Kluwer Academic.

    Book  Google Scholar 

  • Kuhn, K., Raith, A., Schmidt, M., & Schöbel, A. (2016). Bi-criteria robust optimisation. European Journal of Operational Research, 252(2), 418–431.

    Article  Google Scholar 

  • Kuroiwa, D., & Lee, G. M. (2012). On robust multiobjective optimization. Vietnam Journal of Mathematics, 40, 305–317.

    Google Scholar 

  • Kutateladze, S. S. (1979). Convex \(\epsilon \)-programming. Soviet Mathematics, Doklady, 20(2), 391393.

    Google Scholar 

  • Leverenz, J. (2015). Network target coordination for multiparametric programming. Ph. D. Thesis, Department of Mathematical Sciences, Clemson University, Clemson, SC.

  • Loridan, P. (1984). \(\epsilon \)-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43, 265–276.

    Article  Google Scholar 

  • Minoux, M. (2009). On robust maximum flow with polyhedral uncertainty sets. Optimization Letters, 3, 367–376.

    Article  Google Scholar 

  • Nucci, A., Schroeder, B., Bhattacharyya, S., Taft, N., & Diot, C. (2003). IGP link weight assignment for transient link failures. In Proceedings of international teletraffic congress.

    Chapter  Google Scholar 

  • Ogryczak, W. (2014). Tail mean and related robust solution concepts. International Journal of Systems Science, 45(1), 29–38.

    Article  Google Scholar 

  • Palma, C. D., & Nelson, J. D. (2010). Bi-objective multi-period planning with uncertain weights: A robust optimization approach. European Journal of Forest Research, 129(6), 1081–1091.

    Article  Google Scholar 

  • Pareto, V. (1896). Cours d’Économie politique. Lausanne: Rouge.

    Google Scholar 

  • Rexford, J. (2006). Route optimization in IP networks. In M. C. Resende, & P. M. Pardalos (Eds.), Handbook of optimization in telecommunications (pp. 679–700).

  • Rockafellar, R. T. (1997). Convex analysis. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Sebo, D. E. (1981). Multiple objective linear programming in objective space. Ph.D. Thesis, The University of Nebraska, Lincoln.

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154–1157.

    Article  Google Scholar 

  • Tabatabaee, V., Kashyap, A., Bhattacharjee, B., La, R. J., Shayman, M. A. (2007). Robust routing with unknown traffic matrices. In Proceedings of INFOCOM, 26th IEEE international conference on computer communications (pp. 2436–2440).

  • Telecommunications Industry Association (TIA). (2012). TIA’s glossary of telecommunication terms. http://www.tiaonline.org/resources/telecom-glossary?goto=Iy.

  • Witting, K., Ober-Blöbaum, S., & Dellnitz, M. (2013). A variational approach to define robustness for parametric multiobjective optimization problems. Journal of Global Optimization, 57(2), 331–345.

    Article  Google Scholar 

  • Wendell, R. E., & Lee, D. N. (1977). Efficiency in multiple objective optimization problems. Mathematical Programming, 12, 406–414.

    Article  Google Scholar 

  • Yuan, D. (2003). A bicriteria optimization approach for robust OSPF routing. In 3rd IEEE workshop on IP operations and management (pp. 91–98).

  • Zhang, Y. (2004). Personal website. http://www.cs.utexas.edu/~yzhang/research/AbileneTM/.

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous reviewers for their thorough and helpful reviews which significantly improved the quality of the paper. The second author recognizes partial support from Clemson University through Grant URGC 2009/2010. The third author recognizes partial support from the Office of Naval Research through Grant Number N00014-16-1-2725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Wiecek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doolittle, E.K., Kerivin, H.L.M. & Wiecek, M.M. Robust multiobjective optimization with application to Internet routing. Ann Oper Res 271, 487–525 (2018). https://doi.org/10.1007/s10479-017-2751-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2751-5

Keywords

Navigation