Annals of Operations Research

, Volume 266, Issue 1–2, pp 293–312 | Cite as

Robust equity portfolio performance

  • Jang Ho KimEmail author
  • Woo Chang Kim
  • Do-Gyun Kwon
  • Frank J. Fabozzi
Analytical Models for Financial Modeling and Risk Management


The earliest documented analytical approach to portfolio selection is Markowitz’s mean–variance analysis, which attempts to find the portfolio with optimal performance by considering the tradeoff between return and risk. The performance of mean–variance analysis has been the subject of many studies and compared to other portfolio construction approaches such as a naïve equally-weighted allocation scheme. In recent years, several approaches have been proposed to improve the mean–variance model by reducing the sensitivity of the portfolio selection process in order achieve robust performance. Although robust portfolio optimization has been one of the most researched methods for improving portfolio robustness, the performance of robust portfolios has not been the major focus of studies. In this paper, a comprehensive analysis on robust portfolio performance is presented for equity portfolios constructed in the U.S. market during the period 1980 and 2014, and results confirm the advantage of robust portfolio optimization for controlling uncertainty while efficiently allocating investments.


Portfolio optimization Robust optimization Portfolio performance U.S. equity market 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B1014492).


  1. Best, M. J., & Grauer, R. R. (1991). On the sensitivity of mean–variance-efficient portfolios to changes in asset means: Some analytical and computational results. Review of Financial Studies, 4(2), 315–342.CrossRefGoogle Scholar
  2. Bloomfield, T., Leftwich, R., & Long, J. B. (1977). Portfolio strategies and performance. Journal of Financial Economics, 5(2), 201–218.CrossRefGoogle Scholar
  3. Broadie, M. (1993). Computing efficient frontiers using estimated parameters. Annals of Operations Research, 45(1), 21–58.CrossRefGoogle Scholar
  4. Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: Robust portfolio construction. Journal of Asset Management, 7(2), 109–127.CrossRefGoogle Scholar
  5. Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6–11.CrossRefGoogle Scholar
  6. Clarke, R. G., de Silva, H., & Thorley, S. (2006). Minimum-variance portfolios in the US equity market. Journal of Portfolio Management, 33(1), 10–24.CrossRefGoogle Scholar
  7. Cohen, K. J., & Pogue, J. A. (1967). An empirical evaluation of alternative portfolio-selection models. Journal of Business, 40(2), 166–193.CrossRefGoogle Scholar
  8. DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/\(N\) portfolio strategy? Review of Financial Studies, 22(5), 1915–1953.CrossRefGoogle Scholar
  9. Fabozzi, F. J., Gupta, F., & Markowitz, H. M. (2002). The legacy of modern portfolio theory. Journal of Investing, 11(3), 7–22.CrossRefGoogle Scholar
  10. Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176, 191–220.CrossRefGoogle Scholar
  11. Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007a). Robust portfolio optimization. Journal of Portfolio Management, 33, 40–48.CrossRefGoogle Scholar
  12. Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007b). Robust portfolio optimization and management. Hoboken, New Jersey: Wiley.Google Scholar
  13. Fan, J., Fan, Y., & Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 147(1), 186–197.CrossRefGoogle Scholar
  14. Frost, P. A., & Savarino, J. E. (1988). For better performance: Constrain portfolio weights. Journal of Portfolio Management, 15(1), 29–34.CrossRefGoogle Scholar
  15. Garcia, C. B., & Gould, F. J. (1987). A note on the measurement of risk in a portfolio. Financial Analysts Journal, 43(2), 61–69.CrossRefGoogle Scholar
  16. Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1–38.CrossRefGoogle Scholar
  17. Grauer, R. R., & Shen, F. C. (2000). Do constraints improve portfolio performance? Journal of Banking and Finance, 24(8), 1253–1274.CrossRefGoogle Scholar
  18. Hansen, L. P., & Sargent, T. J. (2008). Robustness. Princeton: Princeton University Press.CrossRefGoogle Scholar
  19. Haugen, R. A., & Baker, N. L. (1991). The efficient market inefficiency of capitalization-weighted stock portfolios. Journal of Portfolio Management, 17(3), 35–40.CrossRefGoogle Scholar
  20. Jensen, M. C. (1968). The performance of mutual funds in the period 1945–1964. Journal of Finance, 23(2), 389–416.CrossRefGoogle Scholar
  21. Jorion, P. (1992). Portfolio optimization in practice. Financial Analysts Journal, 48(1), 68–74.CrossRefGoogle Scholar
  22. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2013). Composition of robust equity portfolios. Finance Research Letters, 10(2), 72–81.CrossRefGoogle Scholar
  23. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2014). Recent developments in robust portfolios with a worst-case approach. Journal of Optimization Theory and Applications, 161(1), 103–121.CrossRefGoogle Scholar
  24. Kim, W. C., Kim, J. H., & Fabozzi, F. J. (2016). Robust equity portfolio management + website: Formulations, implementations, and properties using MATLAB. Hoboken: Wiley.Google Scholar
  25. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2017). Robust factor-based investing. Journal of Portfolio Management, 43(5), 157–164.CrossRefGoogle Scholar
  26. Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356–371.CrossRefGoogle Scholar
  27. Linsmeier, T. J., & Pearson, N. D. (2000). Value at risk. Financial Analysts Journal, 56(2), 47–67.CrossRefGoogle Scholar
  28. Maginn, J. L., Tuttle, D. L., McLeavey, D. W., & Pinto, J. E. (2007). Managing investment portfolios: A dynamic process (3rd ed.). Hoboken: Wiley.Google Scholar
  29. Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.Google Scholar
  30. Michaud, R. O. (1989). The Markowitz optimization enigma: Is “optimized” optimal? Financial Analysts Journal, 45, 31–42.CrossRefGoogle Scholar
  31. Qian, E. E., Hua, R. H., & Sorensen, E. H. (2007). Quantitative equity portfolio management: Modern techniques and applications. Boca Raton: CRC Press.Google Scholar
  32. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.CrossRefGoogle Scholar
  33. Roll, R. (1992). A mean/variance analysis of tracking error. Journal of Portfolio Management, 18(4), 13–22.CrossRefGoogle Scholar
  34. Scherer, B. (2007). Can robust portfolio optimization help to build better portfolios? Journal of Asset Management, 7, 374–387.CrossRefGoogle Scholar
  35. Sargent, T. J. (2014). Rational expectations and ambiguity (corrected). Financial Analysts Journal, 70(2), 14–19.CrossRefGoogle Scholar
  36. Siegel, J. J. (1992). The equity premium: Stock and bond returns since 1802. Financial Analysts Journal, 48(1), 28–38.CrossRefGoogle Scholar
  37. Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119–138.CrossRefGoogle Scholar
  38. Sortino, F. A., & Price, L. N. (1994). Performance measurement in a downside risk framework. Journal of Investing, 3(3), 59–64.CrossRefGoogle Scholar
  39. Stubbs, R. A., & Vance, P. (2005). Computing return estimation error matrices for robust optimization. New York: Axioma Inc.Google Scholar
  40. Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1–4), 157–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Jang Ho Kim
    • 1
    Email author
  • Woo Chang Kim
    • 2
  • Do-Gyun Kwon
    • 2
  • Frank J. Fabozzi
    • 3
  1. 1.Kyung Hee UniversityYongin-siSouth Korea
  2. 2.Korea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
  3. 3.EDHEC Business SchoolNiceFrance

Personalised recommendations