Annals of Operations Research

, Volume 276, Issue 1–2, pp 249–266 | Cite as

Semi-supervised generalized eigenvalues classification

  • Marco Viola
  • Mara SangiovanniEmail author
  • Gerardo Toraldo
  • Mario R. Guarracino
Computational Biomedicine


Supervised classification is one of the most powerful techniques to analyze data, when a-priori information is available on the membership of data samples to classes. Since the labeling process can be both expensive and time-consuming, it is interesting to investigate semi-supervised algorithms that can produce classification models taking advantage of unlabeled samples. In this paper we propose LapReGEC, a novel technique that introduces a Laplacian regularization term in a generalized eigenvalue classifier. As a result, we produce models that are both accurate and parsimonious in terms of needed labeled data. We empirically prove that the obtained classifier well compares with other techniques, using as little as 5% of labeled points to compute the models.


Semi-supervised classification Laplacian regularization Manifold regularization Generalized eigenvalues classifiers 



Mara Sangiovanni was supported by Interomics Italian Flagship Project. Mario Guarracino work has been conducted at National Research Institute University Higher School of Economics and has been supported by the RSF Grant No. 14-41-00039.


  1. Antonelli, L., De Simone, V., & di Serafino, D. (2015). On the application of the spectral projected gradient method in image segmentation. Journal of Mathematical Imaging and Vision, 54(1), 106–116.CrossRefGoogle Scholar
  2. Astorino, A., Gorgone, E., Gaudioso, M., & Pallaschke, D. (2011). Data preprocessing in semi-supervised svm classification. Optimization, 60(1–2), 143–151.CrossRefGoogle Scholar
  3. Battiti, R. (1992). First and second-order methods for learning: Between steepest descent and Newton’s method. Neural Computation, 4(2), 141–166.CrossRefGoogle Scholar
  4. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 7, 2399–2434.Google Scholar
  5. Bennett, K. P., & Demiriz, A. (1999). Semi-supervised support vector machines. In Advances in neural information processing systems 11: Proceedings of the 1998 conference (Vol. 11). Cambridge: MIT Press.Google Scholar
  6. Birgin, E. G., Martinez, J. M., & Raydan, M. (2014). Spectral projected gradient methods: Review and perspectives. J. Stat. Softw, 60(3), 1–21.CrossRefGoogle Scholar
  7. Cafieri, S., D’Apuzzo, M., De Simone, V., Di Serafino, D., & Toraldo, G. (2007). Convergence analysis of an inexact potential reduction method for convex quadratic programming. Journal of Optimization Theory and Applications, 135(3), 355–366.CrossRefGoogle Scholar
  8. Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge: MIT Press.Google Scholar
  9. Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2008). Optimization techniques for semi-supervised support vector machines. The Journal of Machine Learning Research, 9, 203–233.Google Scholar
  10. Chapelle, O., Zien, A. (2005). Semi-supervised classification by low density separation. In: AISTATS, (pp. 57–64).Google Scholar
  11. Chen, W. J., Shao, Y. H., Deng, N. Y., & Feng, Z. L. (2014). Laplacian least squares twin support vector machine for semi-supervised classification. Neurocomputing, 145, 465–476.CrossRefGoogle Scholar
  12. Chen, W. J., Shao, Y. H., & Hong, N. (2014). Laplacian smooth twin support vector machine for semi-supervised classification. International Journal of Machine Learning and Cybernetics, 5(3), 459–468.CrossRefGoogle Scholar
  13. Chen, W. J., Shao, Y. H., Li, C. N., & Deng, N. Y. (2016). MLTSVM: A novel twin support vector machine to multi-label learning. Pattern Recognition, 52, 61–74.CrossRefGoogle Scholar
  14. Chen, W. J., Shao, Y. H., Xu, D. K., & Fu, Y. F. (2014). Manifold proximal support vector machine for semi-supervised classification. Applied Intelligence, 40(4), 623–638.CrossRefGoogle Scholar
  15. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.Google Scholar
  16. Cullum, J. K., & Willoughby, R. A. (2002). Lanczos algorithms for large symmetric eigenvalue computations: Vol. I: Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
  17. De Angelis, P. L., & Toraldo, G. (1993). On the identification property of a projected gradient method. SIAM Journal on Numerical Analysis, 30(5), 1483–1497.CrossRefGoogle Scholar
  18. De Asmundis, R., di Serafino, D., Hager, W. W., Toraldo, G., & Zhang, H. (2014). An efficient gradient method using the Yuan steplength. Computational Optimization and Applications, 59(3), 541–563.CrossRefGoogle Scholar
  19. De Asmundis, R., di Serafino, D., Riccio, F., & Toraldo, G. (2013). On spectral properties of steepest descent methods. IMA Journal of Numerical Analysis, 33, 1416–1435.CrossRefGoogle Scholar
  20. di Serafino, D., Ruggiero, V., Toraldo, G., & Zanni, L. (2017). On the steplength selection in gradient methods for unconstrained optimization. Applied Mathematics and Computation,. doi: 10.1016/j.amc.2017.07.037M.Google Scholar
  21. Figueiredo, M. A. T., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–597.CrossRefGoogle Scholar
  22. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.CrossRefGoogle Scholar
  23. Guarracino, M. R., Cifarelli, C., Seref, O., & Pardalos, P. M. (2007). A classification method based on generalized eigenvalue problems. Optimisation Methods and Software, 22(1), 73–81.CrossRefGoogle Scholar
  24. Guarracino, M.R., Irpino, A., Verde, R. (2010). Multiclass generalized eigenvalue proximal support vector machines. In International conference on complex, intelligent and software intensive systems (CISIS), 2010, (pp. 25–32). IEEE.Google Scholar
  25. Guarracino, M. R., Sangiovanni, M., Severino, G., Toraldo, G., & Viola, M. (2016). On the regularization of generalized eigenvalues classifiers. AIP Conference Proceedings, 1776(1), 040005.CrossRefGoogle Scholar
  26. Guarracino, M. R., Xanthopoulos, P., Pyrgiotakis, G., Tomaino, V., Moudgil, B. M., & Pardalos, P. M. (2011). Classification of cancer cell death with spectral dimensionality reduction and generalized eigenvalues. Artificial Intelligence in Medicine, 53(2), 119–125.CrossRefGoogle Scholar
  27. Joachims, T. (1999). Transductive inference for text classification using support vector machines. In ICML, (Vol. 99, 200–209).Google Scholar
  28. Lancaster, P., Ye, Q. (1989). Variational properties and Rayleigh quotient algorithms for symmetric matrix pencils. In The Gohberg Anniversary collection, pp. 247–278. Springer.Google Scholar
  29. Leordeanu, M., Zanfir, A., Sminchisescu, C. (2011). Semi-supervised learning and optimization for hypergraph matching. In IEEE international conference on computer vision (ICCV), 2011, (pp. 2274–2281). IEEE.Google Scholar
  30. LapReGEC and GenSyntheticSpheres Download Page.
  31. Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69–74.CrossRefGoogle Scholar
  32. Melacci, S., & Belkin, M. (2011). Laplacian support vector machines trained in the primal. The Journal of Machine Learning Research, 12, 1149–1184.Google Scholar
  33. Pi, J., Fenn, M., Pardalos, P. (2016). Detecting silica-coated gold nanostars within surface-enhanced resonance Raman spectroscopy mapping via semi-supervised framework combining feature selection and classification. In 2016 32nd Southern biomedical engineering conference (SBEC), (pp. 89–90). IEEE.Google Scholar
  34. Rätsch, G. (2001). Ida benchmark repository. World Wide Web.
  35. Saad, Y. (1992). Numerical methods for large eigenvalue problems. Manchester: Manchester University Press.Google Scholar
  36. Sinha, K. (2014). Semi-supervised learning. In C. C. Aggarwal (Ed.), Data classification: Algorithm and applications, data mining and knowledge discovery series (pp. 511–536). Boca Raton, FL: CRC Press.Google Scholar
  37. Tian, Z., Hwang, T., & Kuang, R. (2009). A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge. Bioinformatics, 25(21), 2831–2838.CrossRefGoogle Scholar
  38. Viola, M., Sangiovanni, M., Toraldo, G., & Guarracino, M. R. (2017). A generalized eigenvalues classifier with embedded feature selection. Optimization Letters, 11(2), 299–311.CrossRefGoogle Scholar
  39. Wilkinson, J. H. (Ed.). (1988). The algebraic eigenvalue problem. New York, NY: Oxford University Press Inc.Google Scholar
  40. Ye, Q. (1989). Variational principles and numerical algorithms for symmetric matrix pencils. Calgary, AB: University of Calgary Theses.Google Scholar
  41. Zhou, T., Tao, D., Wu, X. (2010). NESVM: A fast gradient method for support vector machines. In IEEE 10th international conference on data mining (ICDM), 2010, (pp. 679–688).Google Scholar
  42. Zhu, X. (2010). Semi-supervised learning. In Encyclopedia of machine learning, (pp. 892–897). Springer.Google Scholar
  43. Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, 3(1), 1–130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer, Control and Management EngineeringSapienza University of RomeRomeItaly
  2. 2.Department of Mathematics and ApplicationsUniversity of Naples Federico IINaplesItaly
  3. 3.High Performance Computing and Networking InstituteNational Research Council of ItalyNaplesItaly

Personalised recommendations