Complexity, bounds and dynamic programming algorithms for single track train scheduling

Abstract

In this work we consider the single track train scheduling problem. The problem consists of scheduling a set of trains from opposite sides along a single track. The track has intermediate stations and the trains are only allowed to pass each other at those stations. Traversal times of the trains on the blocks between the stations only depend on the block lengths but not on the train. This problem is a special case of minimizing the makespan in job shop scheduling with two counter routes and no preemption. We develop a lower bound on the makespan of the train scheduling problem which provides us with an easy solution method in some special cases. Additionally, we prove that for a fixed number of blocks the problem can be solved in pseudo-polynomial time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Babushkin, A. I., Bashta, A. A., & Belov, I. S. (1974). Scheduling for the problem with oppositely directed routes. Kibernetika, 7, 130–135.

    Google Scholar 

  2. Babushkin, A. I., Bashta, A. A., & Belov, I. S. (1977). Scheduling for problems of counterroutes. Cybernetics and Systems Analysis, 13(4), 611–617.

    Google Scholar 

  3. Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Operations Research, 17(6), 941–957.

    Article  Google Scholar 

  4. Bersani, C., Qiu, S., Sacile, R., Sallak, M., & Schn, W. (2015). Rapid, robust, distributed evaluation and control of train scheduling on a single line track. Control Engineering Practice, 35, 12–21.

    Article  Google Scholar 

  5. Borndörfer, R., Erol, B., Graffagnino, T., Schlechte, T., & Swarat, E. (2014). Optimizing the simplon railway corridor. Annals of Operations Research, 218(1), 93–106.

    Article  Google Scholar 

  6. Brucker, P., Heitmann, S., & Knust, S. (2005). Scheduling railway traffic at a construction site. In G. Hans-Otto & H. K. Kap (Eds.), Container terminals and automated transport systems. Berlin: Springer.

    Google Scholar 

  7. Butler, S., & Karasik, P. (2010). A note on nested sums. Journal of Integer Sequences, 13(2), 3.

    Google Scholar 

  8. Cacchiani, V., & Toth, P. (2012). Nominal and robust train timetabling problems. European Journal of Operational Research, 219(3), 727–737.

    Article  Google Scholar 

  9. Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational Research, 11(1), 42–47.

    Article  Google Scholar 

  10. Castillo, E., Gallego, I., Ureña, J. M., & Coronado, J. M. (2009). Timetabling optimization of a single railway track line with sensitivity analysis. TOP, 17(2), 256–287.

    Article  Google Scholar 

  11. Chen, B., Potts, C., & Woeginger, G. (1998). A review of machine scheduling: Complexity, algorithms and approximability. In Handbook of combinatorial optimization (pp. 1492–1641). Springer.

  12. Cordeau, J.-F., Toth, P., & Vigo, D. (1998). A survey of optimization models for train routing and scheduling. Transportation Science, 32(4), 380–404.

    Article  Google Scholar 

  13. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (Vol. 2). Cambridge: MIT Press.

    Google Scholar 

  14. Disser, Y., Klimm, M., & Lübbecke, E. (2015). Scheduling bidirectional traffic on a path. In M. M. Halldórsson, K. Iwama, N. Kobayashi, & B. Speckmann (Eds.), Automata, languages, and programming: 42nd international colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Proceedings, Part I (pp. 406–418). Berlin: Springer.

  15. Dushin, B. I. (1988). An algorithm for the solution of the two-route johnson problem. Cybernetics and Systems Analysis, 24(3), 336–343.

    Google Scholar 

  16. Frank, O. (1966). Two-way traffic on a single line of railway. Operations Research, 14(5), 801–811.

    Article  Google Scholar 

  17. Garey, M. R., Johnson, D. S., & Sethi, R. (1976) .The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2), 117–129.

  18. Gonzalez, T. (1982). Unit execution time shop problems. Mathematics of Operations Research, 7(1), 57–66.

    Article  Google Scholar 

  19. Higgins, A., Kozan, E., & Ferreira, L. (1996). Optimal scheduling of trains on a single line track. Transportation Research Part B: Methodological, 30(2), 147–161.

    Article  Google Scholar 

  20. Higgins, E., Kozan, A., & Ferreira, L. (1997). Heuristic techniques for single line train scheduling. Journal of Heuristics, 3(1), 43–62.

    Article  Google Scholar 

  21. Hromkovič, J., Mömke, T., Steinhöfel, K., & Widmayer, P. (2007) . Job shop scheduling with unit length tasks: Bounds and algorithms. Algorithmic Operations Research, 2(1), 1–14.

  22. Jackson, J. R. (1956). An extension of Johnson’s result on job IDT scheduling. Naval Research Logistics Quarterly, 3(3), 201–203.

  23. Janić, M. (1984). Single track line capacity model. Transportation Planning and Technology, 9(2), 135–151.

    Article  Google Scholar 

  24. Kraay, D., Harker, P. T., & Chen, B. (1991). Optimal pacing of trains in freight railroads: Model formulation and solution. Operations Research, 39(1), 82–99.

    Article  Google Scholar 

  25. Lenstra, J. K., & Kan, A. R. (1979). Computational complexity of discrete optimization problems. Annals of Discrete Mathematics, 4, 121–140.

    Article  Google Scholar 

  26. Lübbecke, E. (2015). On-and offline scheduling of bidirectional traffic. Berlin: Logos Verlag Berlin GmbH.

    Google Scholar 

  27. Lübbecke, E., Lübbecke, M. E., & Möhring, R. H. (2014). Ship traffic optimization for the kiel canal. Technical Report 4681. (Optimization Online).

  28. Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219–223.

    Article  Google Scholar 

  29. Mesa, J. A., Ortega, F. A., & Pozo, M. A. (2014). Locating optimal timetables and vehicle schedules in a transit line. Annals of Operations Research, 222(1), 439–455.

    Article  Google Scholar 

  30. Petersen, E. R. (1974). Over-the-road transit time for a single track railway. Transportation Science, 8(1), 65–74.

    Article  Google Scholar 

  31. Rahman, S. A. A. (2013). Freight train scheduling on a single line network. Ph.D. thesis, The University of New South Wales.

  32. Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., & Srdic, A. (2016). Reinforcement learning approach for train rescheduling on a single-track railway. Transportation Research Part B: Methodological, 86, 250–267.

    Article  Google Scholar 

  33. Sevast’janov, S. V. (1994). On some geometric methods in scheduling theory: a survey. Discrete Applied Mathematics, 55(1), 59–82.

    Article  Google Scholar 

  34. Simons, B. (1978). A fast algorithm for single processor scheduling. In IEEE symposium on foundations of computer science (FOCS) (pp. 246–252).

  35. Sotskov, Y. N., & Gholami, O. (2012). Shifting bottleneck algorithm for train scheduling in a single-track railway. IFAC Proceedings Volumes, 45(6), 87–92.

    Article  Google Scholar 

  36. Yang, L., Li, K., & Gao, Z. (2009). Train timetable problem on a single-line railway with fuzzy passenger demand. IEEE Transactions on Fuzzy Systems, 17(3), 617–629.

    Article  Google Scholar 

  37. Yang, L., Gao, Z., & Li, K. (2010). Passenger train scheduling on a single-track or partially double-track railway with stochastic information. Engineering Optimization, 42(11), 1003–1022.

    Article  Google Scholar 

  38. Zhou, X., & Zhong, M. (2007). Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds. Transportation Research Part B: Methodological, 41(3), 320–341.

    Article  Google Scholar 

Download references

Acknowledgements

The authors were partially funded by the DFG under Grant Number SCHO1140/3-2 and by the European Union Seventh Framework Programme (FP7-PEOPLE-2009-IRSES) under Grant Number 246647 with the New Zealand Government (project OptALI). We also thank the Simulationswissenschaftliches Zentrum Clausthal-Göttingen (SWZ) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonas Harbering.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harbering, J., Ranade, A., Schmidt, M. et al. Complexity, bounds and dynamic programming algorithms for single track train scheduling. Ann Oper Res 273, 479–500 (2019). https://doi.org/10.1007/s10479-017-2644-7

Download citation

Keywords

  • Machine scheduling
  • Train scheduling
  • Complexity analysis
  • Counter routes