Skip to main content

Finding the most sustainable wind farm sites with a hierarchical outranking decision aiding method

Abstract

This paper considers the problem of finding suitable sites for wind farms in a region of Catalonia (Spain). The evaluation criteria are structured into a hierarchy that identifies several intermediate sub-goals dealing with different points of view. Therefore, the recent ELECTRE-III-H hierarchical multi-criteria analysis method is proposed as a good solution to help decision-makers. This method establishes an order among the set of possible sites for the wind farms for each sub-goal. ELECTRE-III-H aggregates these orders into an overall order using different parameters. The procedure is based on the construction and exploitation of a pairwise outranking relation, following the principles of concordance (i.e. majority rule) and discordance (i.e. respect for the minority opinions). This paper makes two main contributions. First, it contributes to the ELECTRE-III-H method by studying its mathematical properties for the construction of outranking relations. Second, the case study is solved and its results show that we can effectively represent and manage the overall influence of the various criteria on the global result at different levels of the hierarchy. The paper compares different scenarios with strict, normal, and optimistic preference, indifference and veto thresholds. Results show that the best site differs for technical, economic, environmental, and social intermediate criteria. Therefore, the best overall solution changes depending on the preference and veto thresholds fixed at the intermediate level of the hierarchy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    For the sake of simplicity, in the rest of the paper, a notation based on the preference relation between a and b will be used, such that \(c_j(a,b)=c_{j}(a\phi b)\) and \(d_j(a,b)=d_{j}(a\phi b)\).

  2. 2.

    Autonomous University of Barcelona and centre of Environmental Studies (now called Institute of Environmental Sciences and Technologies ICTA)

References

  1. Afgan, N. H., & Carvalho, M. G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739–755.

    Article  Google Scholar 

  2. Afsordegan, A., Sánchez, M., Agell, N., Aguado, J., & Gamboa, G. (2016a). Absolute order-of-magnitude reasoning applied to a social multi-criteria evaluation framework. Journal of Experimental and Theoretical Artificial Intelligence, 28(1–2), 261–274.

    Article  Google Scholar 

  3. Afsordegan, A., Sánchez, M., Agell, N., Zahedi, S., & Cremades, L. V. (2016b). Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. International Journal of Environmental Science and Technology, 13(6), 1419–1432.

    Article  Google Scholar 

  4. Aras, H., Erdogmus, S., & Koc, E. (2004). Multi-criteria selection for a wind observation station location using analytic hierarchy process. Renewable Energy, 29, 1383–1392.

    Article  Google Scholar 

  5. Bouyssou, D., & Pirlot, M. (2009). An axiomatic analysis of concordancediscordance relations. European Journal of Operational Research, 2(199), 468–477.

    Article  Google Scholar 

  6. Bouyssou, D., Pirlot, M., & Vincke, Ph. (1997). Essays in decision making. A general model of preference aggregation (pp. 120–134). Berlin: Springer.

    Google Scholar 

  7. Carrera, D. G., & Mack, A. (2010). Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts. Energy Policy, 38, 1030–1039.

    Article  Google Scholar 

  8. Colson, G., & Bruyn, C. (1989). Models and methods in multiple criteria decision making (editorial). Oxford: Pergamon Press.

    Google Scholar 

  9. Del Vasto-Terrientes, L., Fernández-Cavia, J., Huertas, A., Moreno, A., & Valls, A. (2015a). Official tourist destination websites: Hierarchical analysis and assessment with ELECTRE-III-H. Tourism Management Perspectives, 15, 16–28.

    Article  Google Scholar 

  10. Del Vasto-Terrientes, L., Kumar, V., Chao, T., & Valls, A. (2016). A decision support system to find the best water allocation strategies in a Mediterranean river basin in future scenarios of global change. Journal of Experimental and Theoretical Artificial Intelligence, 28(1–2), 331–350.

    Article  Google Scholar 

  11. Del Vasto-Terrientes, L., Valls, A., Slowinski, R., & Zielniewicz, P. (2015b). ELECTRE-III-H: An outranking-based decision aiding method for hierarchically structured criteria. Expert Systems with Applications, 42(11), 4910–4926.

    Article  Google Scholar 

  12. Dubois, D., Fargier, H., Perny, P., & Prade, H. (2003). A characterization of generalized concordance rules in multicriteria decision making. International Journal of Intelligent Systems, 7(18), 751–774.

    Article  Google Scholar 

  13. Enzensberger, N., Wietschel, M., & Rentz, O. (2002). Policy instruments fostering wind energy projects-a multi-perspective evaluation approach. Energy Policy, 30, 793–801.

    Article  Google Scholar 

  14. European Commission. (2010). In Communication from the commission Europe 2020, A strategy for smart, sustainable and inclusive growth. Brussels: Tech. rep.

  15. European Commission. (2013). EU energy in figures. Statistical Pocketbook.

  16. Evans, T. J., Strezov, V., & Annette, E. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13, 1062–1088.

    Article  Google Scholar 

  17. Figueira, J. R., & Roy, B. (2009). A note on the paper, “Ranking irregularities when evaluating alternatives by using some ELECTRE methods”, by Wang and Triantaphyllou, Omega (2008). Omega, 3(37), 731–733.

    Article  Google Scholar 

  18. Gamboa, G., & Munda, G. (2007). The problem of windfarm location: A social multi-criteria evaluation framework. Energy Policy, 35(3), 1564–1583.

    Article  Google Scholar 

  19. Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group DSS for sustaining renewable energies exploitation. European Journal of Operational Research, 109, 483–500.

    Article  Google Scholar 

  20. Goletsis, Y., Psarras, J., & Samouilidis, J. E. (2003). Project ranking in the armenian energy sector using a multicriteria method for groups. Annals of Operations Research, 120(1), 135–157.

    Article  Google Scholar 

  21. Greco, S., Matarazzo, B., & Slowinski, R. (2001). Axiomatic basis of noncompensatory preferences. Communication to Foundations of Utility and Risk Theory, FUR X, 109, 483–500.

    Google Scholar 

  22. IEA. (2013). Key world energy statistics. Tech. rep.

  23. Jing, Y. Y., Bai, H., & Wang, J. J. (2012). A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources. Energy Policy, 42, 286–296.

    Article  Google Scholar 

  24. Karvetski, C. W., Lambert, J. H., & Linkov, I. (2011). Scenario and multiple criteria decision analysis for energy and environmental security of military and industrial installations. Integrated Environmental Assessment and Management, 7(2), 228–36.

    Article  Google Scholar 

  25. Lee, A. H., Chen, H. H., & Kang, H. Y. (2009). Multi-criteria decision making on strategic selection of wind farms. Renewable Energy, 34(1), 120–126.

    Article  Google Scholar 

  26. Papadopoulos, A., & Karagiannidis, A. (2008). Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems. Omega, 36(5), 766–776.

    Article  Google Scholar 

  27. PennWel (2012) Renewable Energy World Magazine. https://www.renewableenergymagazine.com.

  28. Pirlot, M. (1997). A common framework for describing some outranking methods. Journal of Multi-Criteria Decision Analysis, 2(6), 86–92.

    Article  Google Scholar 

  29. Radics, K., & Bartholy, J. (2008). Estimating and modelling the wind resource of Hungary. Renewable and Sustainable Energy Reviews, 12(3), 874–882.

    Article  Google Scholar 

  30. Roy, B. (1972). How outranking relation helps multiple criteria decision making. London: Kluwer Academic Publications.

    Google Scholar 

  31. Roy, B. (1996). Multicriteria methodology for decision aiding. SEMA (Metra International), Direction Scientifique, Rapport de recherche

  32. Saaty, T. L., & Sagir, M. (2009). An essay on rank preservation and reversal. Mathematical and Computer Modelling, 5–6(49), 1230–1243.

    Article  Google Scholar 

  33. Saaty, T. L., & Vargas, L. G. (1984). The legitimacy of rank reversal. Omega, 12(5), 513–516.

    Article  Google Scholar 

  34. Streimikiene, D., Balezentis, T., Krisciukaitien, I., & Balezentis, A. (2012). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable and Sustainable Energy Reviews, 16(5), 3302–3311.

    Article  Google Scholar 

  35. Torres Sibille, A. D. C., Cloquell-Ballester, V. A., Cloquell-Ballester, V. A., & Darton, R. (2009). Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms. Renewable and Sustainable Energy Reviews, 13(1), 40–66.

    Article  Google Scholar 

  36. Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., & Kiosses, I. (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy, 37(5), 1587–1600.

    Article  Google Scholar 

  37. Vargas, L. G. (1994). Reply to Schenkerman’s avoiding rank reversal in AHP decision support models. European Journal of Operational Research, 3(74), 420–425.

    Article  Google Scholar 

  38. Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278.

    Article  Google Scholar 

  39. Wang, X., & Triantaphyllou, E. (2008). Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega, Special Issue Section: Papers Presented at the INFORMS Conference, Atlanta 2003, 1(36), 45–63.

  40. Wang, Y. M., & Luo, Y. (2009). On rank reversal in decision analysis. Mathematical and Computer Modelling, 5–6(49), 1221–1229.

    Article  Google Scholar 

  41. Wimmler, C., Hejazi, G., Fernandes, E. D. O., Moreira, C., & Connors, S. (2015). Multi-criteria decision support methods for renewable energy systems on islands. Journal of Clean Energy Technologies, 3(3), 185–195.

    Article  Google Scholar 

  42. Wolsink, M. (2010). Near-shore wind power-protected seascapes, environmentalists attitudes, and the technocratic planning perspective. Land Use Policy, 27(2), 195–203.

    Article  Google Scholar 

  43. Yeh, T. M., & Huang, Y. L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159–169.

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially funded by the Spanish research projects SHADE (TIN-2012-34369) and INVITE (TIN2016-80049-C2-1-R, TIN2016-80049-C2-2-R), the URV grant 2016PFR-URV-B2-60), and by the Research Grant ACM2015 (Aristos Campus Mundus) by the University Ramon Llull. Dr. Afsordegan is also supported by “Obra Social la Caixa”. The authors would also like to thank to the Research team of the Project (HAR2010-20684-C02-01), funded by the Spanish Ministry of Science and Information Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aida Valls.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afsordegan, A., Del Vasto-Terrientes, L., Valls, A. et al. Finding the most sustainable wind farm sites with a hierarchical outranking decision aiding method. Ann Oper Res (2017). https://doi.org/10.1007/s10479-017-2590-4

Download citation

Keywords

  • Hierarchical assessment
  • Multi-criteria decision aid
  • ELECTRE
  • Sustainable energy
  • Wind farm location