Annals of Operations Research

, Volume 266, Issue 1–2, pp 183–198 | Cite as

Recent advancements in robust optimization for investment management

  • Jang Ho Kim
  • Woo Chang Kim
  • Frank J. FabozziEmail author
Analytical Models for Financial Modeling and Risk Management


Robust optimization has become a widely implemented approach in investment management for incorporating uncertainty into financial models. The first applications were to asset allocation and equity portfolio construction. Significant advancements in robust portfolio optimization took place since it gained popularity almost two decades ago for improving classical models on portfolio optimization. Recently, studies applying the worst-case framework to bond portfolio construction, currency hedging, and option pricing have appeared in the practitioner-oriented literature. Our focus in this paper is on recent advancements to categorize robust optimization models into asset allocation at the asset class level and portfolio selection at the individual asset level, and we further separate robust portfolio selection approaches specific to each asset class. This organization provides a clear overview on how robust optimization is extensively implemented in investment management.


Robust optimization Asset allocation Portfolio selection Investment management 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B1014492).


  1. Asl, F. M., & Etula, E. (2012). Advancing strategic asset allocation in a multi-factor world. Journal of Portfolio Management, 39(1), 59.CrossRefGoogle Scholar
  2. Bandi, C., & Bertsimas, D. (2014). Robust option pricing. European Journal of Operational Research, 239(3), 842–853.CrossRefGoogle Scholar
  3. Ben-Tal, A., Bertsimas, D., & Brown, D. B. (2010). A soft robust model for optimization under ambiguity. Operations Research, 58(4), 1220–1234.CrossRefGoogle Scholar
  4. Bertsimas, D., Pachamanova, D., & Sim, M. (2004). Robust linear optimization under general norms. Operations Research Letters, 32(6), 510–516.CrossRefGoogle Scholar
  5. Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.CrossRefGoogle Scholar
  6. Best, M. J., & Grauer, R. R. (1991a). On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. Review of Financial Studies, 4(2), 315–342.CrossRefGoogle Scholar
  7. Best, M. J., & Grauer, R. R. (1991b). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980–989.CrossRefGoogle Scholar
  8. Bienstock, D. (2007). Histogram models for robust portfolio optimization. Journal of Computational Finance, 11(1), 1–64.CrossRefGoogle Scholar
  9. Bo, L., & Capponi, A. (2016). Robust optimization of credit portfolios. Mathematics of Operations Research, 42(1), 30–56.CrossRefGoogle Scholar
  10. Brinson, G. P., Hood, L. R., & Beebower, G. L. (1995). Determinants of portfolio performance. Financial Analysts Journal, 51(1), 133–138.CrossRefGoogle Scholar
  11. Broadie, M. (1993). Computing efficient frontiers using estimated parameters. Annals of Operations Research, 45(1), 21–58.CrossRefGoogle Scholar
  12. Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: Robust portfolio construction. Journal of Asset Management, 7(2), 109–127.CrossRefGoogle Scholar
  13. Chen, C., & Kwon, R. H. (2012). Robust portfolio selection for index tracking. Computers and Operations Research, 39(4), 829–837.CrossRefGoogle Scholar
  14. Chen, W., & Tan, S. (2009). Robust portfolio selection based on asymmetric measures of variability of stock returns. Journal of Computational and Applied Mathematics, 232(2), 295–304.CrossRefGoogle Scholar
  15. Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6–11.CrossRefGoogle Scholar
  16. DeMarzo, P. M., Kremer, I., & Mansour, Y. (2016). Robust option pricing: Hannan and Blackwell meet Black and Scholes. Journal of Economic Theory, 163, 410–434.CrossRefGoogle Scholar
  17. Deng, G., Dulaney, T., McCann, C., & Wang, O. (2013). Robust portfolio optimization with value-at-risk-adjusted Sharpe ratios. Journal of Asset Management, 14(5), 293–305.CrossRefGoogle Scholar
  18. El Ghaoui, L., Oks, M., & Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Operations Research, 51(4), 543–556.CrossRefGoogle Scholar
  19. Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: contributions from operations research and finance. Annals of Operations Research, 176(1), 191–220.CrossRefGoogle Scholar
  20. Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust Portfolio Optimization and Management. New Jersey: Wiley.Google Scholar
  21. Fastrich, B., & Winker, P. (2012). Robust portfolio optimization with a hybrid heuristic algorithm. Computational Management Science, 9(1), 63–88.CrossRefGoogle Scholar
  22. Fliege, J., & Werner, R. (2014). Robust multiobjective optimization and applications in portfolio optimization. European Journal of Operational Research, 234(2), 422–433.CrossRefGoogle Scholar
  23. Fonseca, R. J., & Rustem, B. (2012a). International portfolio management with affine policies. European Journal of Operational Research, 223(1), 177–187.CrossRefGoogle Scholar
  24. Fonseca, R. J., & Rustem, B. (2012b). Robust hedging strategies. Computers and Operations Research, 39(11), 2528–2536.CrossRefGoogle Scholar
  25. Fonseca, R. J., Wiesemann, W., & Rustem, B. (2012). Robust international portfolio management. Computational Management Science, 9(1), 31–62.CrossRefGoogle Scholar
  26. Fonseca, R. J., Zymler, S., Wiesemann, W., & Rustem, B. (2011). Robust optimization of currency portfolios. Journal of Computational Finance, 15(1), 3–30.CrossRefGoogle Scholar
  27. Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1–38.CrossRefGoogle Scholar
  28. Guastaroba, G., Mitra, G., & Speranza, M. G. (2011). Investigating the effectiveness of robust portfolio optimization techniques. Journal of Asset Management, 12(4), 260–280.CrossRefGoogle Scholar
  29. Gülpınar, N., & Çanako\(\bar{\rm g}\)lu, E. (2016). Robust portfolio selection problem under temperature uncertainty. European Journal of Operational Research, 256(2), 500–523.Google Scholar
  30. Gülpınar, N., Katata, K., & Pachamanova, D. A. (2011). Robust portfolio allocation under discrete asset choice constraints. Journal of Asset Management, 12(1), 67–83.CrossRefGoogle Scholar
  31. Gülpınar, N., & Pachamanova, D. (2013). A robust optimization approach to asset-liability management under time-varying investment opportunities. Journal of Banking and Finance, 37(6), 2031–2041.CrossRefGoogle Scholar
  32. Gülpınar, N., Pachamanova, D., & Çanakoğlu, E. (2016). A robust asset-liability management framework for investment products with guarantees. OR Spectrum, 38(4), 1007–1041.CrossRefGoogle Scholar
  33. Hasuike, T., & Mehlawat, M. K. (2017). Investor-friendly and robust portfolio selection model integrating forecasts for financial tendency and risk-averse. Annals of Operations Research, doi: 10.1007/s10479-017-2458-7.
  34. Iyengar, G., & Ma, A. K. C. (2010). A robust optimization approach to pension fund management. Journal of Asset Management, 11(2), 163–177.CrossRefGoogle Scholar
  35. Jaimungal, S., & Sigloch, G. (2012). Incorporating risk and ambiguity aversion into a hybrid model of default. Mathematical Finance, 22(1), 57–81.CrossRefGoogle Scholar
  36. Kapsos, M., Christofides, N., & Rustem, B. (2017). Robust risk budgeting. Annals of Operations Research, doi: 10.1007/s10479-017-2469-4.
  37. Kawas, B., & Thiele, A. (2011). A log-robust optimization approach to portfolio management. OR Spectrum, 33(1), 207–233.CrossRefGoogle Scholar
  38. Kelly, J. (1956). A new interpretation of information rate. IRE Transactions on Information Theory, 2(3), 185–189.CrossRefGoogle Scholar
  39. Kim, W. C., Kim, J. H., Ahn, S. H., & Fabozzi, F. J. (2013). What do robust equity portfolio models really do? Annals of Operations Research, 205(1), 141–168.CrossRefGoogle Scholar
  40. Kim, W. C., Kim, J. H., & Fabozzi, F. J. (2014a). Deciphering robust portfolios. Journal of Banking and Finance, 45, 1–8.CrossRefGoogle Scholar
  41. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2014b). Recent developments in robust portfolios with a worst-case approach. Journal of Optimization Theory and Applications, 161(1), 103–121.CrossRefGoogle Scholar
  42. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2017). Robust factor-based investing. Journal of Portfolio Management, 43(5), 157–164.CrossRefGoogle Scholar
  43. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2016a). Penalizing variances for higher dependency on factors. Quantitative Finance, 17(4), 479–489.CrossRefGoogle Scholar
  44. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2016b). Robust Equity Portfolio Management + Website: Formulations, Implementations, and Properties using MATLAB. New Jersey: Wiley.Google Scholar
  45. Kim, W. C., Kim, J. H., Mulvey, J. M., & Fabozzi, F. J. (2015). Focusing on the worst state for robust investing. International Review of Financial Analysis, 39, 19–31.CrossRefGoogle Scholar
  46. Ling, A., & Xu, C. (2012). Robust portfolio selection involving options under a “marginal + joint” ellipsoidal uncertainty set. Journal of Computational and Applied Mathematics, 236(14), 3373–3393.CrossRefGoogle Scholar
  47. Lutgens, F., & Schotman, P. C. (2010). Robust portfolio optimisation with multiple experts. Review of Finance, 14(2), 343–383.CrossRefGoogle Scholar
  48. Lutgens, F., Sturm, J., & Kolen, A. (2006). Robust one-period option hedging. Operations Research, 54(6), 1051–1062.CrossRefGoogle Scholar
  49. Maginn, J. L., Tuttle, D. L., McLeavey, D. W., & Pinto, J. E. (2007). Managing Investment Portfolios: A Dynamic Process (Vol. 3). New Jersey: Wiley.Google Scholar
  50. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.Google Scholar
  51. Maruhn, J. H., & Sachs, E. W. (2009). Robust static hedging of barrier options in stochastic volatility models. Mathematical Methods of Operations Research, 70(3), 405–433.CrossRefGoogle Scholar
  52. Marzban, S., Mahootchi, M., & Khamseh, A. A. (2015). Developing a multi-period robust optimization model considering American style options. Annals of Operations Research, 233(1), 305–320.CrossRefGoogle Scholar
  53. Michaud, R. O. (1989). The Markowitz optimization enigma: Is ‘optimized’ optimal? Financial Analysts Journal, 45(1), 31–42.CrossRefGoogle Scholar
  54. Moazeni, S., Coleman, T. F., & Li, Y. (2013). Regularized robust optimization: The optimal portfolio execution case. Computational Optimization and Applications, 55(2), 341–377.CrossRefGoogle Scholar
  55. Nguyen, T. D., & Lo, A. W. (2012). Robust ranking and portfolio optimization. European Journal of Operational Research, 221(2), 407–416.CrossRefGoogle Scholar
  56. Pae, Y., & Sabbaghi, N. (2014). Log-robust portfolio management after transaction costs. OR Spectrum, 36(1), 95–112.CrossRefGoogle Scholar
  57. Recchia, R., & Scutellà, M. G. (2014). Robust asset allocation strategies: Relaxed versus classical robustness. IMA Journal of Management Mathematics, 25(1), 21–56.CrossRefGoogle Scholar
  58. Rujeerapaiboon, N., Kuhn, D., & Wiesemann, W. (2015). Robust growth-optimal portfolios. Management Science, 62(7), 2090–2109.CrossRefGoogle Scholar
  59. Rustem, B., & Howe, M. (2002). Algorithms for Worst-Case Design and Applications to Risk Management (Chapter 11). New Jersey: Princeton University Press.Google Scholar
  60. Sadjadi, S. J., Gharakhani, M., & Safari, E. (2012). Robust optimization framework for cardinality constrained portfolio problem. Applied Soft Computing, 12(1), 91–99.CrossRefGoogle Scholar
  61. Scutellà, M. G., & Recchia, R. (2013). Robust portfolio asset allocation and risk measures. Annals of Operations Research, 204(1), 145–169.CrossRefGoogle Scholar
  62. Shen, S., Pelsser, A., & Schotman, P. C. (2014). Robust long-term interest rate risk hedging in incomplete bond markets. Available at SSRN 2475797.Google Scholar
  63. Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132, 157–187.CrossRefGoogle Scholar
  64. Xidonas, P., Mavrotas, G., Hassapis, C., & Zopounidis, C. (2017). Robust multiobjective portfolio optimization: A minimax regret approach. European Journal of Operational Research, 262(1), 299–305.CrossRefGoogle Scholar
  65. Yam, S. C. P., Yang, H., & Yuen, F. L. (2016). Optimal asset allocation: Risk and information uncertainty. European Journal of Operational Research, 251(2), 554–561.CrossRefGoogle Scholar
  66. Zhu, S., & Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155–1168.CrossRefGoogle Scholar
  67. Zymler, S., Rustem, B., & Kuhn, D. (2011). Robust portfolio optimization with derivative insurance guarantees. European Journal of Operational Research, 210(2), 410–424.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jang Ho Kim
    • 1
  • Woo Chang Kim
    • 2
  • Frank J. Fabozzi
    • 3
    Email author
  1. 1.Department of Industrial and Management Systems EngineeringKyung Hee UniversityYongin-siRepublic of Korea
  2. 2.Department of Industrial and Systems EngineeringKorea Advanced Institute of Science and Technology (KAIST)Yuseong-guRepublic of Korea
  3. 3.EDHEC Business SchoolNiceFrance

Personalised recommendations