Ascent–descent variable neighborhood decomposition search for community detection by modularity maximization

Abstract

In this paper we propose a new variant of the Variable Neighborhood Decomposition Search (VNDS) heuristic for solving global optimization problems. We call it Ascent-Descent VNDS since it performs “boundary effect”, or local search step, even if the improvement in solving the subproblem has not been obtained. We apply it in detecting communities in large networks by modularity maximization, the criterion which is, despite of some recent criticism, most widely used. Computational analysis is performed on 22 instances from the 10th DIMACS Implementation Challenge. On 13 instances where optimal solutions were not known, we got the improved best known solutions on 9 instances and on 4 instances the solution was equal to the best known. Thus, the proposed new heuristic outperforms the current state-of-the-art algorithms from the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    All instances can be downloaded from http://www.cc.gatech.edu/dimacs10/downloads.shtml.

  2. 2.

    Results can be downloaded from http://www.cc.gatech.edu/dimacs10/results/Modularity_Quality/.

References

  1. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., & Liberti, L. (2010). Column generation algorithms for exact modularity maximization in networks. Physical Review E, 82(4), 046–112.

    Article  Google Scholar 

  2. Aloise, D., Caporossi, G., Hansen, P., Liberti, L., Perron, S., & Ruiz, M. (2013). Modularity maximization in networks by variable neighborhood search. Graph Partitioning and Graph Clustering, 588, 113–127.

    Article  Google Scholar 

  3. Alpert, CJ., Yao, SZ. (1995). Spectral partitioning: the more eigenvectors, the better. In Proceedings of the 32nd annual ACM/IEEE design automation conference ( pp. 195–200). ACM

  4. Bader, D. A., Meyerhenke, H., Sanders, P., & Wagner, D. (Eds.). (2013). Graph partitioning and graph clustering – 10th DIMACS implementation challenge, contemporary mathematics (Vol. 588). Boston: AMS.

  5. Barber, M. J., & Clark, J. W. (2009). Detecting network communities by propagating labels under constraints. Physical Review E, 80(2), 026–129.

    Article  Google Scholar 

  6. Blondel, V. D., Guillaume, J. L., & Lambiotte, R. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10, P10008.

    Article  Google Scholar 

  7. Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., & Rapisarda, A. (2007). Detecting complex network modularity by dynamical clustering. Physical Review E, 75(4), 045–102.

    Article  Google Scholar 

  8. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., et al. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188.

    Article  Google Scholar 

  9. Cafieri, S., Hansen, P., & Liberti, L. (2010). Edge ratio and community structure in networks. Physical Review E, 81(2), 026–105.

    Article  Google Scholar 

  10. Cafieri, S., Costa, A., & Hansen, P. (2014a). Reformulation of a model for hierarchical divisive graph modularity maximization. Annals of Operations Research, 222(1), 213–226.

    Article  Google Scholar 

  11. Cafieri, S., Hansen, P., & Mladenović, N. (2014b). Edge-ratio network clustering by variable neighborhood search. The, European Physical Journal B, 87(5), 1–7.

    Article  Google Scholar 

  12. Carrizosa, E., Mladenovic, N., Todosijevic, R. (2011). Sum-of-squares clustering on networks. Yugoslav Journal of Operations Research ISSN: 0354–0243 EISSN:2334–6043 21(2)

  13. Carrizosa, E., Mladenović, N., & Todosijević, R. (2013). Variable neighborhood search for minimum sum-of-squares clustering on networks. European Journal of Operational Research, 230(2), 356–363.

    Article  Google Scholar 

  14. Dinh, T. N., & Thai, M. T. (2015). Toward optimal community detection: From trees to general weighted networks. Internet Mathematics, 11(3), 181–200.

    Article  Google Scholar 

  15. Djidjev, HN. (2006). A scalable multilevel algorithm for graph clustering and community structure detection. In International workshop on algorithms and models for the web-graph (pp. 117–128) Springer

  16. Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical review E, 72(2), 027–104.

    Article  Google Scholar 

  17. Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36–41.

    Article  Google Scholar 

  18. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.

    Article  Google Scholar 

  19. Goldschmidt, O., & Hochbaum, D. S. (1988). Polynomial algorithm for the k-cut problem. In 29th annual symposium on foundations of computer science (pp. 444–451). IEEE.

  20. Hanafi, S., Lazić, J., Mladenović, N., Wilbaut, C., & Crevits, I. (2015). New variable neighbourhood search based 0–1 mip heuristics. Yugoslav Journal of Operations Research, 25(3), 343–360.

    Article  Google Scholar 

  21. Hansen, P., Mladenović, N., & Perez-Britos, D. (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335–350.

    Article  Google Scholar 

  22. Hansen, P., Mladenović, N., & Pérez, J. A. M. (2008). Variable neighbourhood search: Methods and applications. 4OR, 6(4), 319–360.

    Article  Google Scholar 

  23. Hansen, P., Ruiz, M., & Aloise, D. (2012). A vns heuristic for escaping local extrema entrapment in normalized cut clustering. Pattern Recognition, 45(12), 4337–4345.

    Article  Google Scholar 

  24. Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2016). Variable neighborhood search: basics and variants. EURO Journal on Computational Optimization. doi:10.1007/s13675-016-0075-x.

  25. Kehagias, A., & Pitsoulis, L. (2013). Bad communities with high modularity. The European Physical Journal B, 86(7), 1–11.

    Article  Google Scholar 

  26. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  Google Scholar 

  27. Liu, X., & Murata, T. (2010). Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A: Statistical Mechanics and its Applications, 389(7), 1493–1500.

    Article  Google Scholar 

  28. Lou, H., Li, S., & Zhao, Y. (2013). Detecting community structure using label propagation with weighted coherent neighborhood propinquity. Physica A: Statistical Mechanics and its Applications, 392(14), 3095–3105.

    Article  Google Scholar 

  29. Medus, A., Acuna, G., & Dorso, C. (2005). Detection of community structures in networks via global optimization. Physica A: Statistical Mechanics and its Applications, 358(2), 593–604.

    Article  Google Scholar 

  30. Miyauchi, A., & Sukegawa, N. (2015). Redundant constraints in the standard formulation for the clique partitioning problem. Optimization Letters, 9(1), 199–207.

    Article  Google Scholar 

  31. Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24(11), 1097–1100.

    Article  Google Scholar 

  32. Nascimento, M. C., & Pitsoulis, L. (2013). Community detection by modularity maximization using grasp with path relinking. Computers and Operations Research, 40(12), 3121–3131.

    Article  Google Scholar 

  33. Newman, M. E. (2006a). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.

    Article  Google Scholar 

  34. Newman, M. E. (2006b). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.

    Article  Google Scholar 

  35. Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026–113.

    Article  Google Scholar 

  36. Niu, Y. Q., Hu, B. Q., Zhang, W., & Wang, M. (2008). Detecting the community structure in complex networks based on quantum mechanics. Physica A: Statistical Mechanics and Its Applications, 387(24), 6215–6224.

    Article  Google Scholar 

  37. Ovelgönne, M., & Geyer-Schulz, A. (2012). An ensemble learning strategy for graph clustering. Graph Partitioning and Graph Clustering, 588, 187.

    Article  Google Scholar 

  38. Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036–106.

    Article  Google Scholar 

  39. Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1), 016–110.

    Google Scholar 

  40. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  41. Sobolevsky, S., Campari, R., Belyi, A., & Ratti, C. (2014). General optimization technique for high-quality community detection in complex networks. Physical Review E, 90(1), 012–811.

    Article  Google Scholar 

  42. Su, J., Havens, TC. (2014). Fuzzy community detection in social networks using a genetic algortihm. In 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 2039–2046). IEEE

  43. Sun, P. G. (2015). Community detection by fuzzy clustering. Physica A: Statistical Mechanics and its Applications, 419, 408–416.

    Article  Google Scholar 

  44. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  45. Wu, P., & Pan, L. (2015). Multi-objective community detection based on memetic algorithm. PloS one, 10(5), e0126845.

    Article  Google Scholar 

  46. Zhang, H., Chen, X., Li, J., & Zhou, B. (2016). Fuzzy community detection via modularity guided membership-degree propagation. Pattern Recognition Letters, 70, 66–72.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by CNPq-Brazil Grants 308887/2014-0 and 400350/ 2014-9, and Serbian Ministry of Education and Science Grant 174010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dušan Džamić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Džamić, D., Aloise, D. & Mladenović, N. Ascent–descent variable neighborhood decomposition search for community detection by modularity maximization. Ann Oper Res 272, 273–287 (2019). https://doi.org/10.1007/s10479-017-2553-9

Download citation

Keywords

  • Clustering
  • Community detection
  • Modularity maximization
  • Variable neighborhood search
  • Decomposition