Ascent–descent variable neighborhood decomposition search for community detection by modularity maximization

  • Dušan Džamić
  • Daniel Aloise
  • Nenad Mladenović
Advances in Theoretical and Applied Combinatorial Optimization

Abstract

In this paper we propose a new variant of the Variable Neighborhood Decomposition Search (VNDS) heuristic for solving global optimization problems. We call it Ascent-Descent VNDS since it performs “boundary effect”, or local search step, even if the improvement in solving the subproblem has not been obtained. We apply it in detecting communities in large networks by modularity maximization, the criterion which is, despite of some recent criticism, most widely used. Computational analysis is performed on 22 instances from the 10th DIMACS Implementation Challenge. On 13 instances where optimal solutions were not known, we got the improved best known solutions on 9 instances and on 4 instances the solution was equal to the best known. Thus, the proposed new heuristic outperforms the current state-of-the-art algorithms from the literature.

Keywords

Clustering Community detection Modularity maximization Variable neighborhood search Decomposition 

Notes

Acknowledgements

This research was partially supported by CNPq-Brazil Grants 308887/2014-0 and 400350/ 2014-9, and Serbian Ministry of Education and Science Grant 174010.

References

  1. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., & Liberti, L. (2010). Column generation algorithms for exact modularity maximization in networks. Physical Review E, 82(4), 046–112.CrossRefGoogle Scholar
  2. Aloise, D., Caporossi, G., Hansen, P., Liberti, L., Perron, S., & Ruiz, M. (2013). Modularity maximization in networks by variable neighborhood search. Graph Partitioning and Graph Clustering, 588, 113–127.CrossRefGoogle Scholar
  3. Alpert, CJ., Yao, SZ. (1995). Spectral partitioning: the more eigenvectors, the better. In Proceedings of the 32nd annual ACM/IEEE design automation conference ( pp. 195–200). ACMGoogle Scholar
  4. Bader, D. A., Meyerhenke, H., Sanders, P., & Wagner, D. (Eds.). (2013). Graph partitioning and graph clustering – 10th DIMACS implementation challenge, contemporary mathematics (Vol. 588). Boston: AMS.Google Scholar
  5. Barber, M. J., & Clark, J. W. (2009). Detecting network communities by propagating labels under constraints. Physical Review E, 80(2), 026–129.CrossRefGoogle Scholar
  6. Blondel, V. D., Guillaume, J. L., & Lambiotte, R. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10, P10008.CrossRefGoogle Scholar
  7. Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., & Rapisarda, A. (2007). Detecting complex network modularity by dynamical clustering. Physical Review E, 75(4), 045–102.CrossRefGoogle Scholar
  8. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., et al. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188.CrossRefGoogle Scholar
  9. Cafieri, S., Hansen, P., & Liberti, L. (2010). Edge ratio and community structure in networks. Physical Review E, 81(2), 026–105.CrossRefGoogle Scholar
  10. Cafieri, S., Costa, A., & Hansen, P. (2014a). Reformulation of a model for hierarchical divisive graph modularity maximization. Annals of Operations Research, 222(1), 213–226.CrossRefGoogle Scholar
  11. Cafieri, S., Hansen, P., & Mladenović, N. (2014b). Edge-ratio network clustering by variable neighborhood search. The, European Physical Journal B, 87(5), 1–7.CrossRefGoogle Scholar
  12. Carrizosa, E., Mladenovic, N., Todosijevic, R. (2011). Sum-of-squares clustering on networks. Yugoslav Journal of Operations Research ISSN: 0354–0243 EISSN:2334–6043 21(2)Google Scholar
  13. Carrizosa, E., Mladenović, N., & Todosijević, R. (2013). Variable neighborhood search for minimum sum-of-squares clustering on networks. European Journal of Operational Research, 230(2), 356–363.CrossRefGoogle Scholar
  14. Dinh, T. N., & Thai, M. T. (2015). Toward optimal community detection: From trees to general weighted networks. Internet Mathematics, 11(3), 181–200.CrossRefGoogle Scholar
  15. Djidjev, HN. (2006). A scalable multilevel algorithm for graph clustering and community structure detection. In International workshop on algorithms and models for the web-graph (pp. 117–128) SpringerGoogle Scholar
  16. Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical review E, 72(2), 027–104.CrossRefGoogle Scholar
  17. Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36–41.CrossRefGoogle Scholar
  18. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.CrossRefGoogle Scholar
  19. Goldschmidt, O., & Hochbaum, D. S. (1988). Polynomial algorithm for the k-cut problem. In 29th annual symposium on foundations of computer science (pp. 444–451). IEEE.Google Scholar
  20. Hanafi, S., Lazić, J., Mladenović, N., Wilbaut, C., & Crevits, I. (2015). New variable neighbourhood search based 0–1 mip heuristics. Yugoslav Journal of Operations Research, 25(3), 343–360.CrossRefGoogle Scholar
  21. Hansen, P., Mladenović, N., & Perez-Britos, D. (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335–350.CrossRefGoogle Scholar
  22. Hansen, P., Mladenović, N., & Pérez, J. A. M. (2008). Variable neighbourhood search: Methods and applications. 4OR, 6(4), 319–360.CrossRefGoogle Scholar
  23. Hansen, P., Ruiz, M., & Aloise, D. (2012). A vns heuristic for escaping local extrema entrapment in normalized cut clustering. Pattern Recognition, 45(12), 4337–4345.CrossRefGoogle Scholar
  24. Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2016). Variable neighborhood search: basics and variants. EURO Journal on Computational Optimization. doi: 10.1007/s13675-016-0075-x.
  25. Kehagias, A., & Pitsoulis, L. (2013). Bad communities with high modularity. The European Physical Journal B, 86(7), 1–11.CrossRefGoogle Scholar
  26. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.CrossRefGoogle Scholar
  27. Liu, X., & Murata, T. (2010). Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A: Statistical Mechanics and its Applications, 389(7), 1493–1500.CrossRefGoogle Scholar
  28. Lou, H., Li, S., & Zhao, Y. (2013). Detecting community structure using label propagation with weighted coherent neighborhood propinquity. Physica A: Statistical Mechanics and its Applications, 392(14), 3095–3105.CrossRefGoogle Scholar
  29. Medus, A., Acuna, G., & Dorso, C. (2005). Detection of community structures in networks via global optimization. Physica A: Statistical Mechanics and its Applications, 358(2), 593–604.CrossRefGoogle Scholar
  30. Miyauchi, A., & Sukegawa, N. (2015). Redundant constraints in the standard formulation for the clique partitioning problem. Optimization Letters, 9(1), 199–207.CrossRefGoogle Scholar
  31. Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24(11), 1097–1100.CrossRefGoogle Scholar
  32. Nascimento, M. C., & Pitsoulis, L. (2013). Community detection by modularity maximization using grasp with path relinking. Computers and Operations Research, 40(12), 3121–3131.CrossRefGoogle Scholar
  33. Newman, M. E. (2006a). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.CrossRefGoogle Scholar
  34. Newman, M. E. (2006b). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.CrossRefGoogle Scholar
  35. Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026–113.CrossRefGoogle Scholar
  36. Niu, Y. Q., Hu, B. Q., Zhang, W., & Wang, M. (2008). Detecting the community structure in complex networks based on quantum mechanics. Physica A: Statistical Mechanics and Its Applications, 387(24), 6215–6224.CrossRefGoogle Scholar
  37. Ovelgönne, M., & Geyer-Schulz, A. (2012). An ensemble learning strategy for graph clustering. Graph Partitioning and Graph Clustering, 588, 187.CrossRefGoogle Scholar
  38. Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036–106.CrossRefGoogle Scholar
  39. Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1), 016–110.Google Scholar
  40. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRefGoogle Scholar
  41. Sobolevsky, S., Campari, R., Belyi, A., & Ratti, C. (2014). General optimization technique for high-quality community detection in complex networks. Physical Review E, 90(1), 012–811.CrossRefGoogle Scholar
  42. Su, J., Havens, TC. (2014). Fuzzy community detection in social networks using a genetic algortihm. In 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 2039–2046). IEEEGoogle Scholar
  43. Sun, P. G. (2015). Community detection by fuzzy clustering. Physica A: Statistical Mechanics and its Applications, 419, 408–416.CrossRefGoogle Scholar
  44. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar
  45. Wu, P., & Pan, L. (2015). Multi-objective community detection based on memetic algorithm. PloS one, 10(5), e0126845.CrossRefGoogle Scholar
  46. Zhang, H., Chen, X., Li, J., & Zhou, B. (2016). Fuzzy community detection via modularity guided membership-degree propagation. Pattern Recognition Letters, 70, 66–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Departamento de Engenharia de Computação e AutomaçãoUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Mathematical InstituteSerbian Academy of SciencesBelgradeSerbia

Personalised recommendations