Annals of Operations Research

, Volume 259, Issue 1–2, pp 65–83 | Cite as

A flexible elicitation procedure for additive model scale constants

  • Adiel T. de Almeida-FilhoEmail author
  • Adiel T. de Almeida
  • Ana Paula C. S. Costa
Original Paper


This paper contributes to the process of eliciting additive model scale constants in order to support choice problems, thereby reducing the effort a decision maker (DM) needs to make since partial information with regard to DM preferences can be used. Procedures related to eliciting weights without a tradeoff interpretation of weights are justified based on assumptions that DM is not able to specify fixed weight values or if DM is able to do so, this would not be reliable information. As long as partial information is provided, the flexible elicitation procedure performs dominance tests based on a linear programming problem to explore the DM’s preferences as a vector space which is built using the DM’s partial information. To provide evidence of the satisfactory performance of the flexible elicitation procedure, an empirical test is presented with results that indicate that this procedure requires less effort from DMs.


Flexible elicitation Partial information MAVT Tradeoff FITradeoff Additive model 



This work had partial support of CNPq (Brazilian research council).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Barron, F. H. (1992). Selecting a best multiattribute alternative with partial information about attribute weights. Acta Psychologica, 80, 91–103.CrossRefGoogle Scholar
  2. Barron, F. H., & Barrett, B. E. (1996). Decision quality using ranked attribute weights. Science, 42, 1515–1523.Google Scholar
  3. Ben Amor, S., Zaras, K., & Aguayo, E. A. (2016). The value of additional information in multicriteria decision making choice problems with information imperfections. Annals of Operations Research. doi: 10.1007/s10479-016-2318-x.
  4. Borcheding, K., Eppel, T., & Winterfeldt, D. V. (1991). Comparison weight judgment in multiattribute utility measurement. Management Science, 37(8), 1603–1619.CrossRefGoogle Scholar
  5. Bottomley, P. A., & Doyle, J. R. (2001). A comparison of three weight elicitation methods: Good, better, and best. Omega, 29, 553–560.CrossRefGoogle Scholar
  6. Bottomley, P. A., Doyle, J. R., & Green, R. H. (2000). Testing the reliability of weight elicitation methods: Direct rating versus point allocation. Journal of Marketing Research, 37(4), 508–513.CrossRefGoogle Scholar
  7. Campos, A. C. S. M., Mareschal, B., & de Almeida, A. T. (2015). Fuzzy FlowSort: An integration of the FlowSort method and fuzzy set theory for decision making on the basis of inaccurate quantitative data. Information Sciences, 293, 115–124.CrossRefGoogle Scholar
  8. Chen, T. Y. (2014a). Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Information Sciences, 261, 149–169.CrossRefGoogle Scholar
  9. Chen, T. Y. (2014b). A prioritized aggregation operator-based approach to multiple criteria decision making using interval-valued intuitionistic fuzzy sets: A comparative perspective. Information Sciences, 28, 97–112.CrossRefGoogle Scholar
  10. Dabbene, F., Shcherbakov, P. S., & Polyak, B. T. (2010). A randomized cutting plane method with probabilistic geometric convergence. SIAM Journal on Optimization, 20, 3185–3207.CrossRefGoogle Scholar
  11. Danielson, M., & Ekenberg, L. (2007). Computing upper and lower bounds in interval decision trees. European Journal of Operational Research, 181(2), 808–816.CrossRefGoogle Scholar
  12. de Almeida, A. T. (2006). Multicriteria decision model for outsourcing contracts selection based on utility function and ELECTRE method. Computers & Operations Research, 34, 3569–3574.CrossRefGoogle Scholar
  13. de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research, 250, 179–191.CrossRefGoogle Scholar
  14. Edwards, W. (1977). How to use multiattribute utility measurement for social decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 7(5), 326–340.CrossRefGoogle Scholar
  15. Edwards, W., & Barron, F. H. (1994). SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes, 60(3), 306–325.CrossRefGoogle Scholar
  16. Eum, Y. S., Park, K. S., & Kim, S. H. (2001). Establishing dominance and potential optimality in multi-criteria analysis with imprecise weight and value. Computers & Operations Research, 28, 397–409.CrossRefGoogle Scholar
  17. Franc, V., & Sonnenburg, S. (2009). Optimized cutting plane algorithm for large-scale risk minimization. Journal of Machine Learning Research, 10, 2157–2192.Google Scholar
  18. Gusmão, A. P. H., & Medeiros, C. P. (2016). A model for selecting a strategic information system using the FITradeoff. Mathematical Problems in Engineering. doi: 10.1155/2016/7850960.
  19. Hazen, G. B. (1986). Partial information, dominance, and potential optimality in multiattribute utility theory. Operations Research, 34(2), 296–310.CrossRefGoogle Scholar
  20. Jia, J., Fischer, G. W., & Dyer, J. S. (1998). Attribute weighting methods and decision quality in the presence of response error: A simulation study. Journal of Behavioral Decision Making, 11, 85–105.CrossRefGoogle Scholar
  21. Jimenez, A., Rıos-Insua, S., & Mateos, A. (2003). A decision support system for multiattribute utility evaluation based on imprecise assignments. Decision Support Systems, 36, 65–79.CrossRefGoogle Scholar
  22. Keeney, R. L., & Raiffa, H. (1976). Decision making with multiple objectives, preferences, and value tradeoffs. New York: Wiley.Google Scholar
  23. Kirkwood, C. W., & Sarin, R. K. (1985). Ranking with partial information: A method and an application. Operations Research, 33, 38–48.CrossRefGoogle Scholar
  24. Larichev, O. I. (1992). Cognitive validity in design of decision-aiding techniques. Journal of Multicriteria Decision Analysis, 1(3), 127–138.CrossRefGoogle Scholar
  25. Li, J., Chen, Y., Yue, C., & Song, H. (2012). Dominance measuring-based approach for multi-attribute decision making with imprecise weights. Journal of Information & Computational Science, 9(8), 3305–3313.Google Scholar
  26. Lotfi, V. T., Stewart, T. J., & Zionts, S. (1992). An aspiration-level interactive model for multiple criteria decision making. Computers Operations Research, 19(7), 671–681.CrossRefGoogle Scholar
  27. Mármol, A. M., Puerto, J., & Fernández, F. R. (2002). Sequencial incorporation of imprecise information of multiple criteria decision processes. European Journal of Operational Research, 137, 123–133.CrossRefGoogle Scholar
  28. Medeiros, C. P., Alencar, M. H., & de Almeida, A. T. (2016). Hydrogen pipelines: Enhancing information visualization and statistical tests for global sensitivity analysis when evaluating multidimensional risks to support decision-making. International Journal of Hydrogen Energy, 41(47), 22192–22205. doi: 10.1016/j.ijhydene.2016.09.113.CrossRefGoogle Scholar
  29. Mustajoki, J. (2005). Decision support by interval SMART/SWING–Incorporating Imprecision in the SMART and SWING methods. Decision Sciences, 36(2), 317–339.CrossRefGoogle Scholar
  30. Mustajoki, J. (2012). Effects of imprecise weighting in hierarchical preference programming. European Journal of Operational Research, 218, 193–201.CrossRefGoogle Scholar
  31. Palha, R. P., de Almeida, A. T., & Alencar, L. H. (2016). A model for sorting activities to be outsourced in civil construction based on ROR-UTADIS. Mathematical Problems in Engineering. doi: 10.1155/2016/9236414.
  32. Park, K. S. (2004). Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(5), 601–614.CrossRefGoogle Scholar
  33. Parreiras, R. O., Ekel, P., & Bernardes, F. (2012). A dynamic consensus scheme based on a nonreciprocal fuzzy preference relation modeling. Information Sciences, 211, 1–17.CrossRefGoogle Scholar
  34. Parreiras, R. O., Ekel, P., Martini, J. S. C., & Palhares, R. M. (2010). A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Information Sciences, 180, 1075–1089.CrossRefGoogle Scholar
  35. Pergher, I., & de Almeida, A. T. (2017). A multi-attribute decision model for setting production planning parameters. Journal of Manufacturing Systems, 42, 224–232. doi: 10.1016/j.jmsy.2016.12.012.CrossRefGoogle Scholar
  36. Pöyhönen, M., & Hämäläinen, R. P. (2001). On the convergence of multiattribute weighting methods. European Journal of Operational Research, 129, 569–585.CrossRefGoogle Scholar
  37. Puerto, J., Mármolm, L. M., & Fernandez, F. R. (2000). Decision criteria with partial information. International Transactions in Operational Research, 7, 51–65.CrossRefGoogle Scholar
  38. Punkka, A., & Salo, A. (2013). Preference programming with incomplete ordinal information. European Journal of Operational Research, 231(1), 141–150. doi: 10.1016/j.ejor.2013.05.003.
  39. Riabacke, M., Danielson, M., & Ekenberg, L. (2012). State-of-the-art prescriptive criteria weight elicitation (p. 24). Cairo: Hindawi Publishing Corporation Advances in Decision Sciences.Google Scholar
  40. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  41. Salo, A., & Hämäläinen, R. P. (1992). Preference assessment by imprecise ratio statements. Operations Research, 40, 1053–1061.CrossRefGoogle Scholar
  42. Salo, A., & Hämäläinen, R. P. (2001). Preference ratios in multiattribute evaluation (PRIME)–elicitation and decision procedures under incomplete information. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 31, 533–545.CrossRefGoogle Scholar
  43. Salo, A., & Punkka, A. (2005). Rank inclusion in criteria hierarchies. European Journal of Operational Research, 163, 338–356.CrossRefGoogle Scholar
  44. Sarabando, P., & Dias, L. C. (2010). Simple procedures of choice in multicriteria problems without precise information about the alternatives’ values. Computers & Operations Research, 37, 2239–2247.CrossRefGoogle Scholar
  45. Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics (2nd ed.). New York: McGraw-Hill.Google Scholar
  46. Steuer, R. E. (1976). Multiple objective linear programming, with interval criterion weights. Management Science, 23, 305–316.CrossRefGoogle Scholar
  47. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.CrossRefGoogle Scholar
  48. Weber, M., & Borcherding, K. (1993). Behavioral influences on weight judgments in multiattribute decision making. European Journal of Operational Research, 67, 1–12.CrossRefGoogle Scholar
  49. Winterfeldt, D. V., & Edwards, W. (1986). Decision analysis and behavioral research. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Universidade Federal de PernambucoCDSID - Center for Decision Systems and Information Development, Av. Acadêmico Hélio Ramos, s/n – Cidade UniversitáriaRecifeBrazil

Personalised recommendations