Annals of Operations Research

, Volume 259, Issue 1–2, pp 389–414 | Cite as

A survey of the standard location-routing problem

Original-Survey or Exposition
  • 349 Downloads

Abstract

In this paper, we define the standard LRP as a deterministic, static, discrete, single-echelon, single-objective location-routing problem in which each customer (vertex) must be visited exactly once for the delivery of a good from a facility, and in which no inventory decisions are relevant. We review the literature on the standard LRP published since the survey by Nagy and Salhi appeared in 2006. We provide concise paper excerpts that convey the central ideas of each work, discuss recent developments in the field, provide a numerical comparison of the most successful heuristic algorithms, and list promising topics for further research.

Keywords

Survey Location-routing problem Standard LRP Capacitated LRP 

References

  1. Ahuja, R., & Orlin, J. (1996). Use of representative operation counts in computational testing of algorithms. INFORMS Journal on Computing, 8(3), 318–330.CrossRefGoogle Scholar
  2. Akca, Z., Berger, R., & Ralphs, T. (2009). A branch-and-price algorithm for combined location and routing problems under capacity restrictions. In J. Chinneck, B. Kristjansson & M. Saltzman (Eds.), Operations research and cyber-infrastructure, vol. 47 of operations research/computer science interfaces (pp. 309–330). Springer.Google Scholar
  3. Albareda-Sambola, M. (2015). Location-routing and location-arc routing. In G. Laporte, S. Nickel, F. Saldanha da Gama & M. Albareda-Sambola (Eds.), Location Science (Chapter 15, pp. 399–418). Springer.Google Scholar
  4. Albareda-Sambola, M., Díaz, J., & Fernández, E. (2005). A compact model and tight bounds for a combined location-routing problem. Computers & Operations Research, 32(3), 407–428.CrossRefGoogle Scholar
  5. Alvim, A., & Taillard, E. (2013). POPMUSIC for the world location-routing problem. EURO Journal on Transportation and Logistics, 2(3), 231–254.CrossRefGoogle Scholar
  6. Balakrishnan, A., Ward, J., & Wong, R. (1987). Integrated facility location and vehicle routing models: Recent work and future prospects. American Journal of Mathematical and Management Sciences, 7(1), 35–61.CrossRefGoogle Scholar
  7. Baldacci, R., & Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing problems. Mathematical Programming, 120(2), 347–380.CrossRefGoogle Scholar
  8. Baldacci, R., Mingozzi, A., & Wolfler Calvo, R. (2011). An exact method for the capacitated location-routing problem. Operations Research, 59(5), 1284–1296.CrossRefGoogle Scholar
  9. Barreto, S., Ferreira, C., Paixão, J., & Santos, B. (2007). Using clustering analysis in a capacitated location-routing problem. European Journal of Operational Research, 179(3), 968–977.CrossRefGoogle Scholar
  10. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.). (2010). Experimental methods for the analysis of optimization algorithms. Berlin: Springer.Google Scholar
  11. Belenguer, J.-M., Benavent, E., Prins, C., Prodhon, C., & Wolfler Calvo, R. (2011). A branch-and-cut method for the capacitated location-routing problem. Computers & Operations Research, 38(6), 931–941.CrossRefGoogle Scholar
  12. Berger, R., Coullard, C., & Daskin, M. (2007). Location-routing problems with distance constraints. Transportation Science, 41(1), 29–43.CrossRefGoogle Scholar
  13. Berman, O., Jaillet, P., & Simchi-Levi, D. (1995). Location-routing problems with uncertainty. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 427–452). New York: Springer.CrossRefGoogle Scholar
  14. Bouhafs, L., Hajjam, A., & Koukam, A. (2006). A combination of simulated annealing and ant colony system for the capacitated location-routing problem. In B. Gabrys, R. Howlett & L. Jain (Eds.), Knowledge-based intelligent information and engineering systems, Vol. 4251 of lecture notes in computer science (pp. 409–416). Springer.Google Scholar
  15. Branco, I., & Coelho, J. (1990). The hamiltonian \(p\)-median problem. European Journal of Operational Research, 47(1), 86–95.CrossRefGoogle Scholar
  16. Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, Part I: Route construction and local search algorithms. Transportation Science, 39(1), 104–118.CrossRefGoogle Scholar
  17. Chan, Y., & Baker, S. (2005). The multiple depot, multiple traveling salesmen facility-location problem: Vehicle range, service frequency, and heuristic implementations. Mathematical and Computer Modelling, 41(8–9), 1035–1053.CrossRefGoogle Scholar
  18. Chen, C., & Ting, C. (2007). A hybrid Lagrangian heuristic/simulated annealing algorithm for the multi-depot location routing problem. Proceedings of the Eastern Asia Society for Transportation Studies, 6, 137–150.Google Scholar
  19. Chen, X., & Chen, B. (2009). Cost-effective designs of fault-tolerant access networks in communication systems. Networks, 53(4), 382–391.CrossRefGoogle Scholar
  20. Contardo, C., Cordeau, J.-F., & Gendron, B. (2013a). A computational comparison of flow formulations for the capacitated location-routing problem. Discrete Optimization, 10(4), 263–295.CrossRefGoogle Scholar
  21. Contardo, C., Cordeau, J.-F., & Gendron, B. (2013b). An exact algorithm based on cut-and-column generation for the capacitated location-routing problem. INFORMS Journal on Computing, 26(1), 88–102.Google Scholar
  22. Contardo, C., Cordeau, J.-F., & Gendron, B. (2014). A GRASP+ ILP-based metaheuristic for the capacitated location-routing problem. Journal of Heuristics, 20, 1–38.CrossRefGoogle Scholar
  23. Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30(2), 105–119.CrossRefGoogle Scholar
  24. Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J., & Semet, F. (2002). A guide to vehicle routing heuristics. Journal of the Operational Research Society, 53(5), 512–522.CrossRefGoogle Scholar
  25. Crainic, T. G., & Kim, K. (2007). Intermodal transportation. In C. Barnhart & G. Laporte (Eds.), Transportation. Handbooks in Operations Research and Management Science (Vol. 14, pp. 467–537). Amsterdam: Elsevier.Google Scholar
  26. Cuda, R., Guastaroba, G., & Speranza, M. G. (2015). A survey on two-echelon routing problems. Computers & Operations Research, 55, 185–199.CrossRefGoogle Scholar
  27. Daskin, M. (1995). Network and discrete location. New York: Wiley.CrossRefGoogle Scholar
  28. Derbel, H., Jarboui, B., Chabchoub, B., Hanafi, S., & Mladenović, N. (2011). A variable neighborhood search for the capacitated location-routing problem. In LOGISTIQUA, 4th international conference on logistics (pp. 514—519).Google Scholar
  29. Derbel, H., Jarboui, B., Hanafi, S., & Chabchoub, H. (2010). An iterated local search for solving a location-routing problem. Electronic Notes in Discrete Mathematics, 36, 875–882.CrossRefGoogle Scholar
  30. Derbel, H., Jarboui, B., Hanafi, S., & Chabchoub, H. (2012). Genetic algorithm with iterated local search for solving a location-routing problem. Expert Systems with Applications, 39(3), 2865–2871.CrossRefGoogle Scholar
  31. Drexl, M. (2012). Synchronization in vehicle routing—A survey of VRPs with multiple synchronization constraints. Transportation Science, 46(3), 297–316.CrossRefGoogle Scholar
  32. Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing problem. European Journal of Operational Research, 241(2), 283–308.CrossRefGoogle Scholar
  33. Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2008). A memetic approach for the capacitated location routing problem. In International workshop on metaheuristics for logistics and vehicle routing (EU/Meeting).Google Scholar
  34. Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2010). A GRASP\(\times \) ELS approach for the capacitated location routing problem. Computers & Operations Research, 37(11), 1912–1923.CrossRefGoogle Scholar
  35. Escobar, J., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing problem. Computers & Operations Research, 40(1), 70–79.CrossRefGoogle Scholar
  36. Escobar, J. W., Linfati, R., Baldoquin, M. G., & Toth, P. (2014). A granular variable tabu neighborhood search for the capacitated location-routing problem. Transportation Research Part B: Methodological, 67, 344–356.CrossRefGoogle Scholar
  37. Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3), 216–229.CrossRefGoogle Scholar
  38. Garey, M., & Johnson, D. (1979). Computers and intractability. New York: Freeman.Google Scholar
  39. Gendreau, M., & Potvin, J.-Y. (Eds). (2010). Handbook of Metaheuristics, Vol. 146 of international series in operations research & management science. Springer.Google Scholar
  40. Ghiani, G., Improta, G., & Laporte, G. (2001). The capacitated arc routing problem with intermediate facilities. Networks, 37(3), 134–143.CrossRefGoogle Scholar
  41. Goemans, M., & Williamson, D. (1994). Approximating minimum-cost graph problems with spanning tree edges. Operations Research Letters, 16(4), 183–189.CrossRefGoogle Scholar
  42. Goemans, M., & Williamson, D. (1995). A general approximation technique for constrained forest problems. SIAM Journal on Computing, 24(2), 296–317.CrossRefGoogle Scholar
  43. Golden, B., Raghavan, S., & Wasil, E. (Eds). (2008). The vehicle routing problem: Latest advances and new challenges, Vol. 43 of operations research/computer science interfaces. Berlin: Springer.Google Scholar
  44. Groër, C., Golden, B., & Wasil, E. (2010). A library of local search heuristics for the vehicle routing problem. Mathematical Programming Computation, 2(2), 79–101.CrossRefGoogle Scholar
  45. Hansen, P., Hegedahl, B., Hjortkjær, S., & Obel, B. (1994). A heuristic solution to the warehouse location-routing problem. European Journal of Operational Research, 76(1), 111–127.CrossRefGoogle Scholar
  46. Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.CrossRefGoogle Scholar
  47. Hemmelmayr, V., Cordeau, J.-F., & Crainic, T. G. (2012). An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers & Operations Research, 39(12), 3215–3228.CrossRefGoogle Scholar
  48. Jabal-Amelia, M., Aryanezhada, M., & Ghaffari-Nasaba, N. (2011). A variable neighborhood descent based heuristic to solve the capacitated location-routing problem. International Journal of Industrial Engineering Computations, 2(1), 141–154.CrossRefGoogle Scholar
  49. Jarboui, B., Derbel, H., Hanafi, S., & Mladenović, N. (2013). Variable neighborhood search for location routing. Computers & Operations Research, 40(1), 47–57.CrossRefGoogle Scholar
  50. Johnson, D. (2002). A theoretician’s guide to the experimental analysis of algorithms. In M. Goldwasser, D. Johnson, & C. McGeoch (Eds.), Data structures, near neighbor searches, and methodology: Proceedings of the fifth and sixth DIMACS implementation challenges (pp. 215–250). Providence: American Mathematical Society.CrossRefGoogle Scholar
  51. Jokar, A., & Sahraeian, R. (2011). An iterative two phase search based heuristic to solve the capacitated location-routing problem. Australian Journal of Basic and Applied Sciences, 5(12), 1613–1621.Google Scholar
  52. Jokar, A., & Sahraeian, R. (2012). A heuristic based approach to solve a capacitated location-routing problem. Journal of Management and Sustainability, 2(2), 219–226.CrossRefGoogle Scholar
  53. Lam, M., & Mittenthal, J. (2013). Capacitated hierarchical clustering heuristic for multi depot location-routing problems. International Journal of Logistics Research and Applications, 16(5), 433–444.CrossRefGoogle Scholar
  54. Lam, M., Mittenthal, J., & Gray, B. (2009). The impact of stopping rules on hierarchical capacitated clustering in location routing problems. Academy of Information and Management Sciences Journal, 12(1), 13–28.Google Scholar
  55. Laporte, G. (1988). Location-routing problems. In B. Golden & A. Assad (Eds.), Vehicle routing: Methods and studies (pp. 163–198). Amsterdam: North-Holland.Google Scholar
  56. Laporte, G. (1989). A survey of algorithms for location-routing problems. Investigación Operativa, 1(1), 93–123.Google Scholar
  57. Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: new test problems, algorithms, and results. Computers & Operations Research, 32(5), 1165–1179.CrossRefGoogle Scholar
  58. Lin, S., & Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2), 498–516.CrossRefGoogle Scholar
  59. Lopes, R. B., Ferreira, C., & Santos, B. S. (2016). A simple and effective evolutionary algorithm for the capacitated location-routing problem. Computers & Operations Research, 70, 155–162.CrossRefGoogle Scholar
  60. Lopes, R. B., Ferreira, C., Santos, B. S., & Barreto, S. (2013). A taxonomical analysis, current methods and objectives on location-routing problems. International Transactions in Operational Research, 20(6), 795–822.Google Scholar
  61. Lopes, R., Barreto, S., Ferreira, C., & Santos, B. (2008). A decision-support tool for a capacitated location-routing problem. Decision Support Systems, 46(1), 366–375.CrossRefGoogle Scholar
  62. Maniezzo, V., Stützle, T., & Voß, S. (Eds). (2010). Matheuristics, Vol. 10 of annals of information systems. New York: Springer.Google Scholar
  63. Marinakis, Y., & Marinaki, M. (2008a). A bilevel genetic algorithm for a real life location routing problem. International Journal of Logistics Research and Applications, 11(1), 49–65.CrossRefGoogle Scholar
  64. Marinakis, Y., & Marinaki, M. (2008b). A particle swarm optimization algorithm with path relinking for the location routing problem. Journal of Mathematical Modelling and Algorithms, 7(1), 59–78.CrossRefGoogle Scholar
  65. Marinakis, Y., Migdalas, A., & Pardalos, P. (2005). Expanding neighborhood GRASP for the traveling salesman problem. Computational Optimization and Applications, 32(3), 231–257.CrossRefGoogle Scholar
  66. Min, H., Jayaraman, V., & Srivastava, R. (1998). Combined location-routing problems: A synthesis and future research directions. European Journal of Operational Research, 108(1), 1–15.CrossRefGoogle Scholar
  67. Mitrović-Minić, S., & Laporte, G. (2006). The pickup and delivery problem with time windows and transshipment. INFOR, 40(3), 217–227.Google Scholar
  68. Montgomery, D. (2012). Design and analysis of experiments. New York: Wiley.Google Scholar
  69. Nadizadeh, A., Sahraeian, R., Zadeh, A., & Homayouni, S. (2011). Using greedy clustering method to solve capacitated location-routing problem. African Journal of Business Management, 5(21), 8470–8477.CrossRefGoogle Scholar
  70. Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649–672.CrossRefGoogle Scholar
  71. Özyurt, Z., & Aksen, D. (2007). Solving the multi-depot location-routing problem with Lagrangian relaxation. In E. Baker, A. Joseph, A. Mehrotra & M. Trick (Eds.), Extending the horizons: Advances in computing, optimization, and decision technologies, Vol. 37 of operations research/computer science interfaces (pp. 125–144). Springer.Google Scholar
  72. Perl, J., & Daskin, M. (1984). A unified warehouse location-routing methodology. Journal of Business Logistics, 5(1), 92–111.Google Scholar
  73. Pirkwieser, S., & Raidl, G. (2010). Variable neighborhood search coupled with ILP-based very large neighborhood searches for the (periodic) location-routing problem. In M. Blesa, C. Blum, G. Raidl, A. Roli & M. Sampels (Eds.), Hybrid metaheuristics, Vol. 6373 of lecture notes in computer science (pp. 174–189). Springer.Google Scholar
  74. Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31(12), 1985–2002.CrossRefGoogle Scholar
  75. Prins, C., Prodhon, C., Ruiz, A., Soriano, P., & Wolfler Calvo, R. (2007). Solving the capacitated location-routing problem by a cooperative Lagrangean relaxation-granular tabu search heuristic. Transportation Science, 41(4), 470–483.CrossRefGoogle Scholar
  76. Prins, C., Prodhon, C., & Wolfler Calvo, R. (2004). Nouveaux algorithmes pour le problème de localisation et routage sous contraintes de capacité. In A. Dolgui & S. Dauzère-Pérèz (Eds.), MOSIM’ 04 (Vol. 2, pp. 1115–1122).Google Scholar
  77. Prins, C., Prodhon, C., & Wolfler Calvo, R. (2006a). A memetic algorithm with population management (MA\(|\)PM) for the capacitated location-routing problem. In J. Gottlieb & G. Raidl (Eds.), Evolutionary computation in combinatorial optimisation (EvoCOP) Proceedings 2006, Vol. 3906 of lecture notes in computer science (pp. 183–194). Springer.Google Scholar
  78. Prins, C., Prodhon, C., & Wolfler Calvo, R. (2006b). Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking, 4OR - A Quarterly Journal of. Operations Research, 4(3), 221–238.Google Scholar
  79. Prodhon, C., & Prins, C. (2008). A memetic algorithm with population management (MA\(|\)PM) for the periodic location-routing problem. In M. Blesa, C. Blum, C. Cotta, A. Fernández, J. Gallardo, A. Roli & M. Sampels (Eds.), 5th international workshop on hybrid metaheuristics, Vol. 5296 of lecture notes in computer science (pp. 43–57). Springer.Google Scholar
  80. Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238(1), 1–17.CrossRefGoogle Scholar
  81. Quiroz Castellanos, M., Cruz Reyes, L., Torres-Jiménez, J., Gómez Santillán, C., López Locés, M., Carrillo Ibarra, J., et al. (2011). Improving the performance of heuristic algorithms based on causal inference. In I. Batyrshin & G. Sidorov (Eds.), Advances in Artificial Intelligence. Lecture Notes in Computer Science (Vol. 7094, pp. 137–148). Heidelberg: Springer.Google Scholar
  82. Renaud, J., Boctor, F., & Laporte, G. (2004). Efficient heuristics for median cycle problems. The Journal of the Operational Research Society, 55(2), 179–186.CrossRefGoogle Scholar
  83. Ryan, D., & Foster, B. (1981). An integer programming approach to scheduling. In A. Wren (Ed.), Computer scheduling of public transport (pp. 269–280). Amsterdam: North-Holland.Google Scholar
  84. Sahraeian, R., & Nadizadeh, A. (2009). Using greedy clustering method to solve capacitated location-routing problem. Dirección y Organización, 39, 79–85.Google Scholar
  85. Salhi, S., & Nagy, G. (1999). A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. Journal of the Operational Research Society, 50(10), 1034–1042.CrossRefGoogle Scholar
  86. Salhi, S., & Rand, G. (1989). The effect of ignoring routes when locating depots. European Journal of Operational Research, 39(2), 150–156.CrossRefGoogle Scholar
  87. Schneider, M., & Löffler, M. (2017). Large composite neighborhoods for the capacitated location-routing problem. Forthcoming in Transportation Science.Google Scholar
  88. Silberholz, J., & Golden, B. (2010). Comparison of metaheuristics. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics (2nd ed., pp. 625–640). New York: Springer.Google Scholar
  89. Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23(8), 661–673.CrossRefGoogle Scholar
  90. Taillard, E., Gambardella, L., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research, 135(1), 1–16.CrossRefGoogle Scholar
  91. Taillard, E., & Voß, S. (2001). Popmusic—Partial optimization metaheuristic under special intensification conditions. In C. Ribeiro & P. Hansen (Eds.), Essays and surveys in metaheuristics (pp. 613–629). New York: Kluwer Academic Publishers.Google Scholar
  92. Ting, C.-J., & Chen, C.-H. (2013). A multiple ant colony optimization algorithm for the capacitated location routing problem. International Journal of Production Economics, 141(1), 34–44.CrossRefGoogle Scholar
  93. Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal on Computing, 15(4), 333–346.CrossRefGoogle Scholar
  94. Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications, MOS-SIAM Series on Optimization (2nd ed.). Philadelphia, PA: SIAM.Google Scholar
  95. Tuzun, D., & Burke, L. (1999). A two-phase tabu search approach to the location routing problem. European Journal of Operational Research, 116(1), 87–99.CrossRefGoogle Scholar
  96. Wang, X., Sun, X., & Fang, Y. (2005). A two-phase hybrid heuristic search approach to the location-routing problem. IEEE International Conference on Systems, Man and Cybernetics, 4, 3338–3343.Google Scholar
  97. Watson, J.-P. (2010). An introduction to fitness landscape analysis and cost models for local search. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (2nd ed., pp. 599–623). New York: Springer.Google Scholar
  98. Wolsey, L. (1998). Integer Programming. New York: Wiley.Google Scholar
  99. Wu, T.-H., Low, C., & Bai, J.-W. (2002). Heuristic solutions to multi-depot location-routing problems. Computers & Operations Research, 29(10), 1393–1415.CrossRefGoogle Scholar
  100. Yu, V., Lin, S.-W., Lee, W., & Ting, C.-J. (2010). A simulated annealing heuristic for the capacitated location routing problem. Computers & Industrial Engineering, 58(2), 288–299.CrossRefGoogle Scholar
  101. Zachariadis, E., & Kiranoudis, C. (2010). A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem. Computers & Operations Research, 37(12), 2089–2105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Deutsche Post Chair of Optimization of Distribution NetworksRWTH Aachen UniversityAachenGermany
  2. 2.Chair of Logistics Management, Gutenberg School of Management and EconomicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations