Robust risk budgeting


Risk based portfolio construction and particular risk parity or equally weighted risk contribution became popular among practitioners. These approaches focus only on risk and are agnostic with respect to the expected returns. In this paper, we consider risk budgeting; a generalization of risk parity. We propose an alternative formulation that is more efficient computationally. We introduce the robust risk budgeting, a robust variant of the standard risk budgeting that deals with the uncertainty in the input parameters. We show that the problem remains tractable under different types of uncertainty. We evaluate the proposed framework on real data and we observe a positive premium associated with the robust variant.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    \(\varvec{x}^{MV} = argmin \{\varvec{x}^\top Q \varvec{x}:\varvec{x}\ge 0,\varvec{1}^\top \varvec{x}=1\}\)


  1. Appell, D. (2009). Bridgewater under the weather. Pensions and Investements.

  2. Artzner, P., Delbaen, F., Eber, J. M. & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

  3. Asness, C., Frazzini, A., & Pedersen, L. (2012). Leverage aversion and risk parity. Financial Analysts Journal, 68(1), 47–59.

  4. Bekaert, G., & Wu, G. (2000). Asymmetric volatility and risk in equity markets. The Review of Financial Studies, 13(1), 1–42.

    Article  Google Scholar 

  5. Black, F., & Litterman, R. (1991). Asset allocation: Combining investor views with market equilibrium. Journal of Fixed Income, 1(2), 7–18.

    Article  Google Scholar 

  6. Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48, 28–43.

    Article  Google Scholar 

  7. Boudt, K., Carl, P., & Peterson, B. G. (2012). Asset allocation with conditional value-at-risk budgets. Journal of Risk, 15(3), 39–68.

    Article  Google Scholar 

  8. Bruder, B., & Roncalli, T. (2012). Managing risk exposures using the risk budgeting approach. Working Paper, Lyxor.

  9. Chaves, D. B., Hsu, J. C., Li, F., & Shakernia, O. (2011). Parity portfolio vs. other asset allocation heuristic portfolios. Journal of Investing, 20(1), 108–118.

  10. Darlington, J., Pantelides, C. C., & Rustem, B. (1999). An algorithm for constrained nonlinear optimization under uncertainty. Automatica, 35(2), 217–228.

    Article  Google Scholar 

  11. DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009a). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55, 798–812.

    Article  Google Scholar 

  12. DeMiguel, V., Garlappi, L., & Uppal, R. (2009b). Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? Review of Financial Studies, 22(5), 1915–1953.

    Article  Google Scholar 

  13. Downing, C., Madhavan, A., Singh, A., & Ulitsky, A. (2015). Portfolio construction and tail risk. Working Paper.

  14. Jensen, M. C., Black, F., & Scholes, M. S. (1972). The capital asset pricing model: Some empirical tests. In M. C. Jensen (Ed.), Studies in the theory of capital markets. New York: Praeger. Available at SSRN:

  15. Kapsos, M., Christofides, N., & Rustem, B. (2014). Worst-case robust omega ratio. European Journal of Operational Research, 234(2), 499–507. (Special Edition: 60 years following Harry Markowitz’s contribution to portfolio theory and operations research).

    Article  Google Scholar 

  16. Kapsos, M., Zymler, S., Christofides, N., & Rustem, B. (2014b). Optimizing omega ratio using linear programming. Journal of Computational Finance, 17(4), 49–57.

    Article  Google Scholar 

  17. Maillard, S., Roncalli, T., & Teïletche, J. (2010). The properties of equally weighted risk contribution portfolios. The Journal of Portfolio Management, 36(4), 60–70.

    Article  Google Scholar 

  18. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  19. Merton, R. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of Financial Economics, 8, 323–361.

    Article  Google Scholar 

  20. Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean-semideviation models. Mathematical Programming, 89(2), 217–232.

    Article  Google Scholar 

  21. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21–42.

    Article  Google Scholar 

  22. Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006). Generalized deviations in risk analysis. Finance and Stochastics, 10(1), 51–74.

    Article  Google Scholar 

  23. Roncalli, T. (2013). Introduction to risk parity and budgeting. Boca Raton: CRC Press.

    Google Scholar 

  24. Sharpe, W. F. (1994). The sharpe ratio. Journal of Portfolio Management, 21, 49–58.

    Article  Google Scholar 

  25. Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132, 157–187.

    Article  Google Scholar 

  26. Viceira, L. M. (2007). Life-cycle funds. Harvard Business School, Harvard University, Working Paper.

  27. Zakovic, S., & Rustem, B. (2003). Semi-infinite programming and applications to minimax problems. Annals of Operations Research, 124(1), 81–110.

    Article  Google Scholar 

  28. Zhu, S., & Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155–1168.

Download references


The authors would like to thank Dr. G. A. Hanasusanto for helpful discussions regarding Appendix A. They also acknowledge partial support of the EPSRC (EP/I014640/1) for the third author and thank the anonymous referees for the comments and suggestions.

Author information



Corresponding author

Correspondence to Michalis Kapsos.

A general case: NLP-SDP formulation

A general case: NLP-SDP formulation

Recall, the robust optimization problem under the general case for the uncertainty definition (810)

$$\begin{aligned} \min _{y \ge 0} \max _{Q \in {\mathbb {Q}}} ~&~ \varvec{y} ^\top Q \varvec{y} - \sum _{i=1}^n b_i \ln y_i\end{aligned}$$
$$\begin{aligned} \text {s.t. } ~&~ Q^l \le Q \le Q^u \end{aligned}$$
$$\begin{aligned}&~ Q \succcurlyeq 0. \end{aligned}$$

For a fixed \(\varvec{y}\), since \(\varvec{y} ^\top Q \varvec{y} = \Big < Q,\varvec{y} \varvec{y} ^\top \Big>\), the inner problem can be written as

$$\begin{aligned} \max _{{\mathbb {Q}}}~&~ \Big \{ \Big < Q,\varvec{y} \varvec{y} ^\top \Big >:~ Q - Q^l \ge 0,~ -Q+Q^u \ge 0,~ Q\succcurlyeq 0 \Big \}, \end{aligned}$$

where \(\Big < A,B \Big > = Trace(AB).\) The Lagrangian of the above is

$$\begin{aligned} {\mathcal {L}}(.) = \Big< Q,\varvec{y} \varvec{y} ^\top \Big> + \Big< Q-Q^l,L \Big> + \Big< -Q+Q^u,U \Big>+ \Big <Q,Z \Big >, \end{aligned}$$

where \(U\ge 0\), \(L\ge 0\) and \(Z\succeq 0\). Therefore, the dual of the above is

$$\begin{aligned}&~\min _{U \ge 0, L \ge 0} \Big \{ \Big< U,Q^u \Big> - \Big < L,Q^l \Big > : \varvec{y} \varvec{y} ^\top - U - L + Z = 0, Z\succeq 0 \Big \} \end{aligned}$$
$$\begin{aligned} \Rightarrow ~&~ \min _{U \ge 0, L \ge 0} \Big \{ \Big< U,Q^u \Big> - \Big < L,Q^l \Big > : \varvec{y} \varvec{y} ^\top - U - L \preceq 0 \Big \}. \end{aligned}$$

Therefore, the optimization problem (1820) becomes

$$\begin{aligned} \min _{\varvec{y} \ge 0, U \ge 0, L \ge 0} ~&~ \Big<U, Q^u \Big> - \Big < L, Q^l \Big > - \sum _{i=1}^n b_i \ln y_i \end{aligned}$$
$$\begin{aligned} \text {s.t. } ~&~ \varvec{y} \varvec{y}^\top - U + L \preceq 0. \qquad \qquad \qquad \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kapsos, M., Christofides, N. & Rustem, B. Robust risk budgeting. Ann Oper Res 266, 199–221 (2018).

Download citation


  • Robust
  • Risk
  • Parity
  • Budgeting
  • Contribution