Abstract
This paper highlights the role of behavioral factors for efficiency measurement in supply networks. To this aim, behavioral issues are investigated among interrelations between decision makers involved in corporate bond service networks. The corporate bond network was considered in three consecutive stages, where each stage represents the relations between two members of the network: issuer–underwriter, underwriter–bank, and bank–investor. Adopting a multi-method approach, we collected behavioral data by conducting semi-structured interviews and applying the critical incident technique. Financial and behavioral data, collected from each stage in 20 corporate bond networks, were analyzed using fuzzy network data envelopment analysis to obtain overall and stage-wise efficiency scores for each network. Sensitivity analyzes of the findings revealed inefficiencies in the relations between underwriters–issuers, banks–underwriters, and banks–investors stemming from certain behavioral factors. The results show that incorporating behavioral factors provides a better means of efficiency measurement in supply networks.
Similar content being viewed by others
References
Agrawal, V., & Seshadri, S. (2000). Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem. Manufacturing & Service Operations Management, 2(4), 410–423. doi:10.1287/msom.2.4.410.12339.
Akther, S., Fukuyama, H., & Weber, W. L. (2013). Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking. Omega, 41(1), 88–96. doi:10.1016/j.omega.2011.02.009.
Andres, C., Betzer, A., & Limbach, P. (2014). Underwriter reputation and the quality of certification: Evidence from high-yield bonds. Journal of Banking & Finance, 40, 97–115. doi:10.1016/j.jbankfin.2013.11.029.
Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44(9), 1175–1184. doi:10.1037/0003-066X.44.9.1175.
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52(1), 1–26. doi:10.1146/annurev.psych.52.1.1.
Bazerman, M., & Moore, D. A. (2012). Judgment in managerial decision making (Vol. 8). New York: Wiley.
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141–B-164. doi:10.1287/mnsc.17.4.B141.
Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case research strategy in studies of information systems. MIS Quarterly, 11(3), 369–386.
Bendoly, E. (2014). System dynamics understanding in projects: Information sharing, psychological safety, and performance effects. Production and Operations Management, 23(8), 1352–1369. doi:10.1111/poms.12024.
Bendoly, E., Croson, R., Goncalves, P., & Schultz, K. (2010). Bodies of knowledge for research in behavioral operations. Production and Operations Management, 19(4), 434–452. doi:10.1111/j.1937-5956.2009.01108.x.
Bendoly, E., Donohue, K., & Schultz, K. L. (2006). Behavior in operations management: Assessing recent findings and revisiting old assumptions. Journal of Operations Management, 24(6), 737–752. doi:10.1016/j.jom.2005.10.001.
Bendoly, E., van Wezel, W., & Bachrach, D. G. (2015). The handbook of behavioral operations management: Social and psychological dynamics in production and service settings. New York, NY: Oxford University Press.
Boyer, K. K., & Swink, M. L. (2008). Empirical elephants—Why multiple methods are essential to quality research in operations and supply chain management. Journal of Operations Management, 26, 337–348.
Carter, C. R., Kaufmann, L., & Michel, A. (2007). Behavioral supply management: A taxonomy of judgment and decision-making biases. International Journal of Physical Distribution & Logistics Management, 37(8), 631–669. doi:10.1108/09600030710825694.
Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3–4), 181–186. doi:10.1002/nav.3800090303.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.
Chell, E. (1998). Critical incident technique. Thousand Oaks, CA: Sage.
Chen, C., & Yan, H. (2011). Network DEA model for supply chain performance evaluation. European Journal of Operational Research, 213(1), 147–155. doi:10.1016/j.ejor.2011.03.010.
Croson, R., Donohue, K., Katok, E., & Sterman, J. D. (2014). Order stability in supply chains: Coordination risk and the role of coordination stock. Production and Operations Management, 23(2), 176–196. doi:10.1111/j.1937-5956.2012.01422.x.
Croson, R., Schultz, K., Siemsen, E., & Yeo, M. L. (2013). Behavioral operations: The state of the field. Journal of Operations Management, 31(1–2), 1–5. doi:10.1016/j.jom.2012.12.001.
Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.
Edvardsson, B., & Strandvik, T. (2000). Is a critical incident critical for a customer relationship? Managing Service Quality: An International Journal, 10(2), 82–91. doi:10.1108/09604520010318272.
Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4), 532–550. doi:10.5465/amr.1989.4308385.
Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Economic Planning Sciences, 42(3), 151–157. doi:10.1016/j.seps.2007.07.002.
Fare, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34(1), 35–49. doi:10.1016/S0038-0121(99)00012-9.
Fare, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.
Fawcett, S. E., Waller, M. A., & Bowersox, D. J. (2011). Cinderella in the C-Suite: Conducting influential research to advance the logistics and supply chain disciplines. Journal of Business Logistics, 32(2), 115–121. doi:10.1111/j.2158-1592.2011.01010.x.
Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. European Journal of Operational Research, 204(2), 189–198. doi:10.1016/j.ejor.2009.08.003.
Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327–358. doi:10.1037/h0061470.
Friend, S. B., & Johnson, J. S. (2014). Key account relationships: An exploratory inquiry of customer-based evaluations. Industrial Marketing Management, 43(4), 642–658. doi:10.1016/j.indmarman.2013.11.009.
Gabbott, M., & Hogg, G. (1996). The glory of stories: Using critical incidents to understand service evaluation in the primary healthcare context. Journal of Marketing Management, 12(6), 493–503. doi:10.1080/0267257X.1996.9964431.
Gande, A., Puri, M., & Saunders, A. (1999). Bank entry, competition, and the market for corporate securities underwriting. Journal of Financial Economics, 54(2), 165–195. doi:10.1016/S0304-405X(99)00035-5.
Giannoccaro, I., & Ilaria, G. (2013). Behavioral issues in operations management new trends in design, management, and methodologies/Giannoccaro, Ilaria. London: Springer.
Gino, F., & Pisano, G. (2008). Toward a theory of behavioral operations. M&Som-Manufacturing & Service Operations Management, 10(4), 676–691. doi:10.1287/msom.1070.0205.
Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking qualitative rigor in inductive research: Notes on the Gioia Methodology. Organizational Research Methods, 16(1), 15–31. doi:10.1177/1094428112452151.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New York, NY: Aldine De Gruyter.
Gremler, D. D. (2004). The critical incident technique in service research. Journal of Service Research, 7(1), 65–89. doi:10.1177/1094670504266138.
Haines, R., Hough, J. R., & Haines, D. (2010). Individual and environmental impacts on supply chain inventory management: An experimental investigation of information availability and procedural rationality. Journal of Business Logistics, 31(2), 111–128. doi:10.1002/j.2158-1592.2010.tb00144.x.
Hämäläinen, R. P., Luoma, J., & Saarinen, E. (2013). On the importance of behavioral operational research: The case of understanding and communicating about dynamic systems. European Journal of Operational Research, 228(3), 623–634. doi:10.1016/j.ejor.2013.02.001.
Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214(3), 457–472. doi:10.1016/j.ejor.2011.02.001.
Holbrook, M. B., & O’Shaughnessy, J. (1988). On the scientific status of consumer research and the need for an interpretive approach to studying consumption behavior. Journal of Consumer Research, 15(3), 398–402. doi:10.1086/209178.
Hough, J. R., & White, M. A. (2003). Environmental dynamism and strategic decision-making rationality: An examination at the decision level. Strategic Management Journal, 24(5), 481–489. doi:10.1002/smj.303.
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5(1), 193–206. doi:10.2307/1942711.
Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192(3), 949–962. doi:10.1016/j.ejor.2007.10.008.
Kao, C. (2014). Network data envelopment analysias: A review. European Journal of Operational Research, 239(1), 1–16. doi:10.1016/j.ejor.2014.02.039.
Kao, C., & Hwang, S.-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429. doi:10.1016/j.ejor.2006.11.041.
Kao, C., & Hwang, S.-N. (2010). Efficiency measurement for network systems: IT impact on firm performance. Decision Support Systems, 48(3), 437–446. doi:10.1016/j.dss.2009.06.002.
Kao, C., & Liu, S.-T. (2011). Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets and Systems, 176(1), 20–35. doi:10.1016/j.fss.2011.03.003.
Kao, C., & Liu, S.-T. (2014). Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks. Omega, 47, 90–98. doi:10.1016/j.omega.2013.09.001.
Kassarjian, H. (1977). Content analysis in consumer research. The Journal of Consumer Research, 4(1), 8–18. doi:10.1086/208674.
Katsikopoulos, K. V., & Gigerenzer, G. (2013). Behavioral operations management: A blind spot and a research program. Journal of Supply Chain Management, 49(1), 3–7. doi:10.1111/j.1745-493x.2012.03285.x.
Kaufmann, L., Michel, A., & Carter, C. R. (2009). Debiasing strategies in supply management decision-making. Journal of Business Logistics, 30(1), 85–106. doi:10.1002/j.2158-1592.2009.tb00100.x.
Knemeyer, A. M., & Naylor, R. W. (2011). Using behavioral experiments to expand our horizons and deepen our understanding of logistics and supply chain decision making. Journal of Business Logistics, 32(4), 296–302. doi:10.1111/j.0000-0000.2011.01025.x.
Latham, G. P., & Locke, E. A. (1991). Self-regulation through goal setting. Organizational Behavior and Human Decision Processes, 50(2), 212–247. doi:10.1016/0749-5978(91)90021-K.
Liang, L., Yang, F., Cook, W. D., & Zhu, J. (2006). DEA models for supply chain efficiency evaluation. Annals of Operations Research, 145(1), 35–49. doi:10.1007/s10479-006-0026-7.
Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. doi:10.1016/j.omega.2012.11.004.
Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57(9), 705–717. doi:10.1037/0003-066X.57.9.705.
Lozano, S. (2015). Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega. doi:10.1016/j.omega.2015.02.012.
Mathis, J., McAndrews, J., & Rochet, J.-C. (2009). Rating the raters: Are reputation concerns powerful enough to discipline rating agencies? Journal of Monetary Economics, 56(5), 657–674. doi:10.1016/j.jmoneco.2009.04.004.
Matthews, K. (2013). Risk management and managerial efficiency in Chinese banks: A network DEA framework. Omega, 41(2), 207–215. doi:10.1016/j.omega.2012.06.003.
Mingers, J. (2011). Soft OR comes of age—But not everywhere!. Omega, 39(6), 729–741. doi:10.1016/j.omega.2011.01.005.
Mirhedayatian, S. M., Azadi, M., & Farzipoor Saen, R. (2014). A novel network data envelopment analysis model for evaluating green supply chain management. International Journal of Production Economics, 147, 544–554. doi:10.1016/j.ijpe.2013.02.009.
Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115(2), 502–517. doi:10.1037/0033-295X.115.2.502.
Moreno, P., & Lozano, S. (2014). A network DEA assessment of team efficiency in the NBA. Annals of Operations Research, 214(1), 99–124. doi:10.1007/s10479-012-1074-9.
Mussweiler, T., & Strack, F. (2001). The semantics of anchoring. Organizational Behavior and Human Decision Processes, 86(2), 234–255. doi:10.1006/obhd.2001.2954.
Nagarajan, M., & Shechter, S. (2014). Prospect theory and the newsvendor problem. Management Science, 60(4), 1057–1062. doi:10.1287/mnsc.2013.1804.
Narayanan, A., & Moritz, B. B. (2015). Decision Making and Cognition in Multi-Echelon Supply Chains: An Experimental Study. Production and Operations Management. doi:10.1111/poms.12343.
Özer, Ö., & Zheng, Y. (2012). Behavioral issues in pricing management. In O. Ozer & R. Phillips (Eds.), The Oxford handbook of pricing management (p. 415461). Oxford: Oxford University Press.
Özer, Ö., Zheng, Y. C., & Ren, Y. F. (2014). Trust, trustworthiness, and information sharing in supply chains bridging china and the United States. Management Science, 60(10), 2435–2460. doi:10.1287/mnsc.2014.1905.
Paradi, J. C., & Zhu, H. (2013). A survey on bank branch efficiency and performance research with data envelopment analysis. Omega, 41(1), 61–79. doi:10.1016/j.omega.2011.08.010.
Pedrycz, W. (1994). Why triangular membership functions? Fuzzy Sets and Systems, 64(1), 21–30. doi:10.1016/0165-0114(94)90003-5.
Ramezanpour, M. (2015). Iran’s troubled bond market. Available at: http://www.al-monitor.com/pulse/originals/2015/08/iran-bond-market.html#. Accessed 5 Nov 2015.
Rao, S. (2014). Iran: A frontier for the future. Available at: http://blogs.reuters.com/globalinvesting/2014/03/17/irana-frontier-for-the-future/. Accessed 6 Nov 2016.
Read, D., Jin, Y. H., & Fawcett, S. E. (2014). Trust in value co-creation strategies: Moving toward a conceptualization we can trust. Journal of Business Logistics, 35(1), 97–98. doi:10.1111/jbl.12040.
Riedl, D. F., Kaufmann, L., Zimmermann, C., & Perols, J. L. (2013). Reducing uncertainty in supplier selection decisions: Antecedents and outcomes of procedural rationality. Journal of Operations Management, 31(1–2), 24–36. doi:10.1016/j.jom.2012.10.003.
Sanders, N. R., & Wagner, S. M. (2011). Multidisciplinary and multimethod research for addressing contemporary supply chain challenges. Journal of Business Logistics, 32(4), 317–323. doi:10.1111/j.0000-0000.2011.01027.x.
Stauss, B. (1993). Using the critical incident technique in measuring and managing service quality. In E. E. Scheuing & W. F. Christopher (Eds.), The service quality handbook (pp. 408–427). New York: American Management Association.
Su, X. (2008). Bounded rationality in newsvendor models. Manufacturing & Service Operations Management, 10(4), 566–589. doi:10.1287/msom.1070.0200.
Talluri, S., Kull, T. J., Yildiz, H., & Yoon, J. (2013). Assessing the efficiency of risk mitigation strategies in supply chains. Journal of Business Logistics, 34(4), 253–269. doi:10.1111/jbl.12025.
Tiwana, A., Wang, J., Keil, M., & Ahluwalia, P. (2007). The bounded rationality bias in managerial valuation of real options: Theory and evidence from IT projects. Decision Sciences, 38(1), 157–181. doi:10.1111/j.1540-5915.2007.00152.x.
Tokar, T., Aloysius, J. A., & Waller, M. A. (2012). Supply chain inventory replenishment: The debiasing effect of declarative knowledge. Decision Sciences, 43(3), 525–546. doi:10.1111/j.1540-5915.2012.00355.x.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. doi:10.1126/science.185.4157.1124.
Vaz, C. B., Camanho, A. S., & Guimarães, R. C. (2010). The assessment of retailing efficiency using network data envelopment analysis. Annals of Operations Research, 173(1), 5–24. doi:10.1007/s10479-008-0397-z.
Villena, V. H., Revilla, E., & Choi, T. Y. (2011). The dark side of buyer-supplier relationships: A social capital perspective. Journal of Operations Management, 29(6), 561–576. doi:10.1016/j.jom.2010.09.001.
Wan, X., & Evers, P. T. (2011). Supply chain networks with multiple retailers: A test of the emerging theory on inventories, stockouts, and bullwhips. Journal of Business Logistics, 32(1), 27–39. doi:10.1111/j.2158-1592.2011.01003.x.
Wang, C. X., & Webster, S. (2009). The loss-averse newsvendor problem. Omega—International Journal of Management Science, 37(1), 93–105. doi:10.1016/j.omega.2006.08.003.
Wang, K., Huang, W., Wu, J., & Liu, Y.-N. (2014). Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega, 44, 5–20. doi:10.1016/j.omega.2013.09.005.
Wang, N. M., Ma, Y. G., He, Z. W., Che, A., Huang, Y. F., & Xu, J. P. (2014). The impact of consumer price forecasting behaviour on the bullwhip effect. International Journal of Production Research, 52(22), 6642–6663. doi:10.1080/00207543.2014.907513.
Wathne, K. H., & Heide, J. B. (2000). Opportunism in interfirm relationships: Forms, outcomes, and solutions. Journal of Marketing, 64(4), 36–51. doi:10.1509/jmkg.64.4.36.18070.
Wright, C., & Thornton, P. (2015). Iran poised to exit ‘deep freeze’ with bond issues, UK visit. Available at: http://www.emergingmarkets.org/Article/3496398/Iran-poised-to-exitdeep-freeze-with-bond-issues-UK-visit.html. Accessed 5 Nov 2015.
Wu, D. D., & Birge, J. R. (2012). Serial chain merger evaluation model and application to mortgage banking. Decision Sciences, 43(1), 5–36. doi:10.1111/j.1540-5915.2011.00340.x.
Wu, D. D., & Olson, D. (2009). Enterprise risk management: A DEA VaR approach in vendor selection. International Journal of Production Research, 48(16), 4919–4932. doi:10.1080/00207540903051684.
Wu, D. Y., & Chen, K.-Y. (2014). Supply chain contract design: Impact of bounded rationality and individual heterogeneity. Production and Operations Management, 23(2), 253–268. doi:10.1111/poms.12057.
Yang, F., Wu, D., Liang, L., Bi, G., & Wu, D. D. (2011). Supply chain DEA: Production possibility set and performance evaluation model. Annals of Operations Research, 185(1), 195–211. doi:10.1007/s10479-008-0511-2.
Yasuda, A. (2005). Do bank relationships affect the firm’s underwriter choice in the corporate-bond underwriting market? Journal of Finance, 60(3), 1259–1292. doi:10.1111/j.1540-6261.2005.00761.x.
Yasuda, A. (2007). Bank relationships and underwriter competition: Evidence from Japan. Journal of Financial Economics, 86(2), 369–404. doi:10.1016/j.jfineco.2006.08.006.
Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Thousand Oaks, CA: Sage.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199–249. doi:10.1016/0020-0255(75)90036-5.
Acknowledgements
The authors would like to thank Professor Endre Boros, the editor of Annals of Operations Research, and anonymised reviewers for their insightful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Profile of the interviews
No. | Organization | Respondent’s functional position | Date (2013–2014) |
---|---|---|---|
1 | Mellat Bank | Head of Corporate Banking Division | 18 December |
2 | Eghtesad Novin Bank | Head of Research and Planning Centre | 20 December |
3 | Amin Investment Bank | Head of the Investment Bank | 25 December |
4 | Omid Investment Bank | Head of the Investment Bank | 31 December |
5 | Melli Bank | Member of Board of Directors | 8 January |
6 | Omid Investment Bank | Head of Financial Risk Mgt. Division | 16 January |
7 | Novin Investment Bank | Head of the Investment Bank | 22 January |
8 | Melli Bank | Head of Retail Banking Division | 24 January |
9 | Saman Bank | Member of Board of Directors | 30 January |
10 | Novin Investment Bank | Head of Financial Risk and Controlling | 5 February |
11 | Sepehr Investment Bank | Director, Research and Development | 9 February |
12 | Saman Bank | Member of Board of Directors | 12 February |
13 | Amin Investment Bank | Head the Investment Bank | 14 February |
14 | Sepehr Investment Bank | Director, Risk Analysis and Mgt. Division | 20 February |
15 | Corporate Client #1\(^{\mathrm{a}}\) | Director, CFO Division | 28 February |
16 | Corporate Client #2\(^{\mathrm{a}}\) | Head of Strategic Management | 3 March |
17 | Corporate Client #3\(^{\mathrm{a}}\) | Director, CFO Division | 6 March |
18 | Corporate Client #4\(^{\mathrm{a}}\) | Director, CFO Division | 10 March |
19 | Investor representatives#1\(^{\mathrm{a}}\) | – | 18 March |
20 | Investor representatives#2\(^{\mathrm{a}}\) | – | 23 March |
21 | Investor representatives#3\(^{\mathrm{a}}\) | – | 25 March |
22 | Investor representatives#4\(^{\mathrm{a}}\) | – | 28 March |
Appendix 2: Interview protocol: corporate client’s perspective
Rights and permissions
About this article
Cite this article
Pournader, M., Kach, A., Hajiagha, S.H.R. et al. Investigating the impact of behavioral factors on supply network efficiency: insights from banking’s corporate bond networks. Ann Oper Res 254, 277–302 (2017). https://doi.org/10.1007/s10479-017-2457-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-017-2457-8