Annals of Operations Research

, Volume 254, Issue 1–2, pp 277–302 | Cite as

Investigating the impact of behavioral factors on supply network efficiency: insights from banking’s corporate bond networks

  • Mehrdokht PournaderEmail author
  • Andrew Kach
  • Seyed Hossein Razavi Hajiagha
  • Ali Emrouznejad
Original Paper


This paper highlights the role of behavioral factors for efficiency measurement in supply networks. To this aim, behavioral issues are investigated among interrelations between decision makers involved in corporate bond service networks. The corporate bond network was considered in three consecutive stages, where each stage represents the relations between two members of the network: issuer–underwriter, underwriter–bank, and bank–investor. Adopting a multi-method approach, we collected behavioral data by conducting semi-structured interviews and applying the critical incident technique. Financial and behavioral data, collected from each stage in 20 corporate bond networks, were analyzed using fuzzy network data envelopment analysis to obtain overall and stage-wise efficiency scores for each network. Sensitivity analyzes of the findings revealed inefficiencies in the relations between underwriters–issuers, banks–underwriters, and banks–investors stemming from certain behavioral factors. The results show that incorporating behavioral factors provides a better means of efficiency measurement in supply networks.


Behavioural operations Corporate bonds service network Network data envelopment analysis Fuzzy sets 



The authors would like to thank Professor Endre Boros, the editor of Annals of Operations Research, and anonymised reviewers for their insightful comments and suggestions.


  1. Agrawal, V., & Seshadri, S. (2000). Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem. Manufacturing & Service Operations Management, 2(4), 410–423. doi: 10.1287/msom.2.4.410.12339.CrossRefGoogle Scholar
  2. Akther, S., Fukuyama, H., & Weber, W. L. (2013). Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking. Omega, 41(1), 88–96. doi: 10.1016/ Scholar
  3. Andres, C., Betzer, A., & Limbach, P. (2014). Underwriter reputation and the quality of certification: Evidence from high-yield bonds. Journal of Banking & Finance, 40, 97–115. doi: 10.1016/j.jbankfin.2013.11.029.CrossRefGoogle Scholar
  4. Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44(9), 1175–1184. doi: 10.1037/0003-066X.44.9.1175.CrossRefGoogle Scholar
  5. Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52(1), 1–26. doi: 10.1146/annurev.psych.52.1.1.CrossRefGoogle Scholar
  6. Bazerman, M., & Moore, D. A. (2012). Judgment in managerial decision making (Vol. 8). New York: Wiley.Google Scholar
  7. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141–B-164. doi: 10.1287/mnsc.17.4.B141.CrossRefGoogle Scholar
  8. Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case research strategy in studies of information systems. MIS Quarterly, 11(3), 369–386.CrossRefGoogle Scholar
  9. Bendoly, E. (2014). System dynamics understanding in projects: Information sharing, psychological safety, and performance effects. Production and Operations Management, 23(8), 1352–1369. doi: 10.1111/poms.12024.CrossRefGoogle Scholar
  10. Bendoly, E., Croson, R., Goncalves, P., & Schultz, K. (2010). Bodies of knowledge for research in behavioral operations. Production and Operations Management, 19(4), 434–452. doi: 10.1111/j.1937-5956.2009.01108.x.CrossRefGoogle Scholar
  11. Bendoly, E., Donohue, K., & Schultz, K. L. (2006). Behavior in operations management: Assessing recent findings and revisiting old assumptions. Journal of Operations Management, 24(6), 737–752. doi: 10.1016/j.jom.2005.10.001.CrossRefGoogle Scholar
  12. Bendoly, E., van Wezel, W., & Bachrach, D. G. (2015). The handbook of behavioral operations management: Social and psychological dynamics in production and service settings. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  13. Boyer, K. K., & Swink, M. L. (2008). Empirical elephants—Why multiple methods are essential to quality research in operations and supply chain management. Journal of Operations Management, 26, 337–348.CrossRefGoogle Scholar
  14. Carter, C. R., Kaufmann, L., & Michel, A. (2007). Behavioral supply management: A taxonomy of judgment and decision-making biases. International Journal of Physical Distribution & Logistics Management, 37(8), 631–669. doi: 10.1108/09600030710825694.CrossRefGoogle Scholar
  15. Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3–4), 181–186. doi: 10.1002/nav.3800090303.CrossRefGoogle Scholar
  16. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.CrossRefGoogle Scholar
  17. Chell, E. (1998). Critical incident technique. Thousand Oaks, CA: Sage.Google Scholar
  18. Chen, C., & Yan, H. (2011). Network DEA model for supply chain performance evaluation. European Journal of Operational Research, 213(1), 147–155. doi: 10.1016/j.ejor.2011.03.010.CrossRefGoogle Scholar
  19. Croson, R., Donohue, K., Katok, E., & Sterman, J. D. (2014). Order stability in supply chains: Coordination risk and the role of coordination stock. Production and Operations Management, 23(2), 176–196. doi: 10.1111/j.1937-5956.2012.01422.x.CrossRefGoogle Scholar
  20. Croson, R., Schultz, K., Siemsen, E., & Yeo, M. L. (2013). Behavioral operations: The state of the field. Journal of Operations Management, 31(1–2), 1–5. doi: 10.1016/j.jom.2012.12.001.CrossRefGoogle Scholar
  21. Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  22. Edvardsson, B., & Strandvik, T. (2000). Is a critical incident critical for a customer relationship? Managing Service Quality: An International Journal, 10(2), 82–91. doi: 10.1108/09604520010318272.CrossRefGoogle Scholar
  23. Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4), 532–550. doi: 10.5465/amr.1989.4308385.Google Scholar
  24. Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Economic Planning Sciences, 42(3), 151–157. doi: 10.1016/j.seps.2007.07.002.CrossRefGoogle Scholar
  25. Fare, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34(1), 35–49. doi: 10.1016/S0038-0121(99)00012-9.CrossRefGoogle Scholar
  26. Fare, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.CrossRefGoogle Scholar
  27. Fawcett, S. E., Waller, M. A., & Bowersox, D. J. (2011). Cinderella in the C-Suite: Conducting influential research to advance the logistics and supply chain disciplines. Journal of Business Logistics, 32(2), 115–121. doi: 10.1111/j.2158-1592.2011.01010.x.CrossRefGoogle Scholar
  28. Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. European Journal of Operational Research, 204(2), 189–198. doi: 10.1016/j.ejor.2009.08.003.CrossRefGoogle Scholar
  29. Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327–358. doi: 10.1037/h0061470.CrossRefGoogle Scholar
  30. Friend, S. B., & Johnson, J. S. (2014). Key account relationships: An exploratory inquiry of customer-based evaluations. Industrial Marketing Management, 43(4), 642–658. doi: 10.1016/j.indmarman.2013.11.009.CrossRefGoogle Scholar
  31. Gabbott, M., & Hogg, G. (1996). The glory of stories: Using critical incidents to understand service evaluation in the primary healthcare context. Journal of Marketing Management, 12(6), 493–503. doi: 10.1080/0267257X.1996.9964431.CrossRefGoogle Scholar
  32. Gande, A., Puri, M., & Saunders, A. (1999). Bank entry, competition, and the market for corporate securities underwriting. Journal of Financial Economics, 54(2), 165–195. doi: 10.1016/S0304-405X(99)00035-5.CrossRefGoogle Scholar
  33. Giannoccaro, I., & Ilaria, G. (2013). Behavioral issues in operations management new trends in design, management, and methodologies/Giannoccaro, Ilaria. London: Springer.Google Scholar
  34. Gino, F., & Pisano, G. (2008). Toward a theory of behavioral operations. M&Som-Manufacturing & Service Operations Management, 10(4), 676–691. doi: 10.1287/msom.1070.0205.CrossRefGoogle Scholar
  35. Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking qualitative rigor in inductive research: Notes on the Gioia Methodology. Organizational Research Methods, 16(1), 15–31. doi: 10.1177/1094428112452151.CrossRefGoogle Scholar
  36. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New York, NY: Aldine De Gruyter.Google Scholar
  37. Gremler, D. D. (2004). The critical incident technique in service research. Journal of Service Research, 7(1), 65–89. doi: 10.1177/1094670504266138.CrossRefGoogle Scholar
  38. Haines, R., Hough, J. R., & Haines, D. (2010). Individual and environmental impacts on supply chain inventory management: An experimental investigation of information availability and procedural rationality. Journal of Business Logistics, 31(2), 111–128. doi: 10.1002/j.2158-1592.2010.tb00144.x.CrossRefGoogle Scholar
  39. Hämäläinen, R. P., Luoma, J., & Saarinen, E. (2013). On the importance of behavioral operational research: The case of understanding and communicating about dynamic systems. European Journal of Operational Research, 228(3), 623–634. doi: 10.1016/j.ejor.2013.02.001.CrossRefGoogle Scholar
  40. Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214(3), 457–472. doi: 10.1016/j.ejor.2011.02.001.CrossRefGoogle Scholar
  41. Holbrook, M. B., & O’Shaughnessy, J. (1988). On the scientific status of consumer research and the need for an interpretive approach to studying consumption behavior. Journal of Consumer Research, 15(3), 398–402. doi: 10.1086/209178.CrossRefGoogle Scholar
  42. Hough, J. R., & White, M. A. (2003). Environmental dynamism and strategic decision-making rationality: An examination at the decision level. Strategic Management Journal, 24(5), 481–489. doi: 10.1002/smj.303.CrossRefGoogle Scholar
  43. Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5(1), 193–206. doi: 10.2307/1942711.CrossRefGoogle Scholar
  44. Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192(3), 949–962. doi: 10.1016/j.ejor.2007.10.008.CrossRefGoogle Scholar
  45. Kao, C. (2014). Network data envelopment analysias: A review. European Journal of Operational Research, 239(1), 1–16. doi: 10.1016/j.ejor.2014.02.039.CrossRefGoogle Scholar
  46. Kao, C., & Hwang, S.-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429. doi: 10.1016/j.ejor.2006.11.041.CrossRefGoogle Scholar
  47. Kao, C., & Hwang, S.-N. (2010). Efficiency measurement for network systems: IT impact on firm performance. Decision Support Systems, 48(3), 437–446. doi: 10.1016/j.dss.2009.06.002.CrossRefGoogle Scholar
  48. Kao, C., & Liu, S.-T. (2011). Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets and Systems, 176(1), 20–35. doi: 10.1016/j.fss.2011.03.003.CrossRefGoogle Scholar
  49. Kao, C., & Liu, S.-T. (2014). Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks. Omega, 47, 90–98. doi: 10.1016/ Scholar
  50. Kassarjian, H. (1977). Content analysis in consumer research. The Journal of Consumer Research, 4(1), 8–18. doi: 10.1086/208674.
  51. Katsikopoulos, K. V., & Gigerenzer, G. (2013). Behavioral operations management: A blind spot and a research program. Journal of Supply Chain Management, 49(1), 3–7. doi: 10.1111/j.1745-493x.2012.03285.x.CrossRefGoogle Scholar
  52. Kaufmann, L., Michel, A., & Carter, C. R. (2009). Debiasing strategies in supply management decision-making. Journal of Business Logistics, 30(1), 85–106. doi: 10.1002/j.2158-1592.2009.tb00100.x.CrossRefGoogle Scholar
  53. Knemeyer, A. M., & Naylor, R. W. (2011). Using behavioral experiments to expand our horizons and deepen our understanding of logistics and supply chain decision making. Journal of Business Logistics, 32(4), 296–302. doi: 10.1111/j.0000-0000.2011.01025.x.CrossRefGoogle Scholar
  54. Latham, G. P., & Locke, E. A. (1991). Self-regulation through goal setting. Organizational Behavior and Human Decision Processes, 50(2), 212–247. doi: 10.1016/0749-5978(91)90021-K.CrossRefGoogle Scholar
  55. Liang, L., Yang, F., Cook, W. D., & Zhu, J. (2006). DEA models for supply chain efficiency evaluation. Annals of Operations Research, 145(1), 35–49. doi: 10.1007/s10479-006-0026-7.CrossRefGoogle Scholar
  56. Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. doi: 10.1016/ Scholar
  57. Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57(9), 705–717. doi: 10.1037/0003-066X.57.9.705.CrossRefGoogle Scholar
  58. Lozano, S. (2015). Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega. doi: 10.1016/
  59. Mathis, J., McAndrews, J., & Rochet, J.-C. (2009). Rating the raters: Are reputation concerns powerful enough to discipline rating agencies? Journal of Monetary Economics, 56(5), 657–674. doi: 10.1016/j.jmoneco.2009.04.004.CrossRefGoogle Scholar
  60. Matthews, K. (2013). Risk management and managerial efficiency in Chinese banks: A network DEA framework. Omega, 41(2), 207–215. doi: 10.1016/ Scholar
  61. Mingers, J. (2011). Soft OR comes of age—But not everywhere!. Omega, 39(6), 729–741. doi: 10.1016/ Scholar
  62. Mirhedayatian, S. M., Azadi, M., & Farzipoor Saen, R. (2014). A novel network data envelopment analysis model for evaluating green supply chain management. International Journal of Production Economics, 147, 544–554. doi: 10.1016/j.ijpe.2013.02.009.CrossRefGoogle Scholar
  63. Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115(2), 502–517. doi: 10.1037/0033-295X.115.2.502.CrossRefGoogle Scholar
  64. Moreno, P., & Lozano, S. (2014). A network DEA assessment of team efficiency in the NBA. Annals of Operations Research, 214(1), 99–124. doi: 10.1007/s10479-012-1074-9.CrossRefGoogle Scholar
  65. Mussweiler, T., & Strack, F. (2001). The semantics of anchoring. Organizational Behavior and Human Decision Processes, 86(2), 234–255. doi: 10.1006/obhd.2001.2954.CrossRefGoogle Scholar
  66. Nagarajan, M., & Shechter, S. (2014). Prospect theory and the newsvendor problem. Management Science, 60(4), 1057–1062. doi: 10.1287/mnsc.2013.1804.CrossRefGoogle Scholar
  67. Narayanan, A., & Moritz, B. B. (2015). Decision Making and Cognition in Multi-Echelon Supply Chains: An Experimental Study. Production and Operations Management. doi: 10.1111/poms.12343.
  68. Özer, Ö., & Zheng, Y. (2012). Behavioral issues in pricing management. In O. Ozer & R. Phillips (Eds.), The Oxford handbook of pricing management (p. 415461). Oxford: Oxford University Press.CrossRefGoogle Scholar
  69. Özer, Ö., Zheng, Y. C., & Ren, Y. F. (2014). Trust, trustworthiness, and information sharing in supply chains bridging china and the United States. Management Science, 60(10), 2435–2460. doi: 10.1287/mnsc.2014.1905.CrossRefGoogle Scholar
  70. Paradi, J. C., & Zhu, H. (2013). A survey on bank branch efficiency and performance research with data envelopment analysis. Omega, 41(1), 61–79. doi: 10.1016/ Scholar
  71. Pedrycz, W. (1994). Why triangular membership functions? Fuzzy Sets and Systems, 64(1), 21–30. doi: 10.1016/0165-0114(94)90003-5.CrossRefGoogle Scholar
  72. Ramezanpour, M. (2015). Iran’s troubled bond market. Available at: Accessed 5 Nov 2015.
  73. Rao, S. (2014). Iran: A frontier for the future. Available at: Accessed 6 Nov 2016.
  74. Read, D., Jin, Y. H., & Fawcett, S. E. (2014). Trust in value co-creation strategies: Moving toward a conceptualization we can trust. Journal of Business Logistics, 35(1), 97–98. doi: 10.1111/jbl.12040.CrossRefGoogle Scholar
  75. Riedl, D. F., Kaufmann, L., Zimmermann, C., & Perols, J. L. (2013). Reducing uncertainty in supplier selection decisions: Antecedents and outcomes of procedural rationality. Journal of Operations Management, 31(1–2), 24–36. doi: 10.1016/j.jom.2012.10.003.CrossRefGoogle Scholar
  76. Sanders, N. R., & Wagner, S. M. (2011). Multidisciplinary and multimethod research for addressing contemporary supply chain challenges. Journal of Business Logistics, 32(4), 317–323. doi: 10.1111/j.0000-0000.2011.01027.x.CrossRefGoogle Scholar
  77. Stauss, B. (1993). Using the critical incident technique in measuring and managing service quality. In E. E. Scheuing & W. F. Christopher (Eds.), The service quality handbook (pp. 408–427). New York: American Management Association.Google Scholar
  78. Su, X. (2008). Bounded rationality in newsvendor models. Manufacturing & Service Operations Management, 10(4), 566–589. doi: 10.1287/msom.1070.0200.CrossRefGoogle Scholar
  79. Talluri, S., Kull, T. J., Yildiz, H., & Yoon, J. (2013). Assessing the efficiency of risk mitigation strategies in supply chains. Journal of Business Logistics, 34(4), 253–269. doi: 10.1111/jbl.12025.CrossRefGoogle Scholar
  80. Tiwana, A., Wang, J., Keil, M., & Ahluwalia, P. (2007). The bounded rationality bias in managerial valuation of real options: Theory and evidence from IT projects. Decision Sciences, 38(1), 157–181. doi: 10.1111/j.1540-5915.2007.00152.x.CrossRefGoogle Scholar
  81. Tokar, T., Aloysius, J. A., & Waller, M. A. (2012). Supply chain inventory replenishment: The debiasing effect of declarative knowledge. Decision Sciences, 43(3), 525–546. doi: 10.1111/j.1540-5915.2012.00355.x.CrossRefGoogle Scholar
  82. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. doi: 10.1126/science.185.4157.1124.CrossRefGoogle Scholar
  83. Vaz, C. B., Camanho, A. S., & Guimarães, R. C. (2010). The assessment of retailing efficiency using network data envelopment analysis. Annals of Operations Research, 173(1), 5–24. doi: 10.1007/s10479-008-0397-z.CrossRefGoogle Scholar
  84. Villena, V. H., Revilla, E., & Choi, T. Y. (2011). The dark side of buyer-supplier relationships: A social capital perspective. Journal of Operations Management, 29(6), 561–576. doi: 10.1016/j.jom.2010.09.001.CrossRefGoogle Scholar
  85. Wan, X., & Evers, P. T. (2011). Supply chain networks with multiple retailers: A test of the emerging theory on inventories, stockouts, and bullwhips. Journal of Business Logistics, 32(1), 27–39. doi: 10.1111/j.2158-1592.2011.01003.x.CrossRefGoogle Scholar
  86. Wang, C. X., & Webster, S. (2009). The loss-averse newsvendor problem. Omega—International Journal of Management Science, 37(1), 93–105. doi: 10.1016/ Scholar
  87. Wang, K., Huang, W., Wu, J., & Liu, Y.-N. (2014). Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega, 44, 5–20. doi: 10.1016/ Scholar
  88. Wang, N. M., Ma, Y. G., He, Z. W., Che, A., Huang, Y. F., & Xu, J. P. (2014). The impact of consumer price forecasting behaviour on the bullwhip effect. International Journal of Production Research, 52(22), 6642–6663. doi: 10.1080/00207543.2014.907513.CrossRefGoogle Scholar
  89. Wathne, K. H., & Heide, J. B. (2000). Opportunism in interfirm relationships: Forms, outcomes, and solutions. Journal of Marketing, 64(4), 36–51. doi: 10.1509/jmkg. Scholar
  90. Wright, C., & Thornton, P. (2015). Iran poised to exit ‘deep freeze’ with bond issues, UK visit. Available at: Accessed 5 Nov 2015.
  91. Wu, D. D., & Birge, J. R. (2012). Serial chain merger evaluation model and application to mortgage banking. Decision Sciences, 43(1), 5–36. doi: 10.1111/j.1540-5915.2011.00340.x.CrossRefGoogle Scholar
  92. Wu, D. D., & Olson, D. (2009). Enterprise risk management: A DEA VaR approach in vendor selection. International Journal of Production Research, 48(16), 4919–4932. doi: 10.1080/00207540903051684.CrossRefGoogle Scholar
  93. Wu, D. Y., & Chen, K.-Y. (2014). Supply chain contract design: Impact of bounded rationality and individual heterogeneity. Production and Operations Management, 23(2), 253–268. doi: 10.1111/poms.12057.CrossRefGoogle Scholar
  94. Yang, F., Wu, D., Liang, L., Bi, G., & Wu, D. D. (2011). Supply chain DEA: Production possibility set and performance evaluation model. Annals of Operations Research, 185(1), 195–211. doi: 10.1007/s10479-008-0511-2.CrossRefGoogle Scholar
  95. Yasuda, A. (2005). Do bank relationships affect the firm’s underwriter choice in the corporate-bond underwriting market? Journal of Finance, 60(3), 1259–1292. doi: 10.1111/j.1540-6261.2005.00761.x.CrossRefGoogle Scholar
  96. Yasuda, A. (2007). Bank relationships and underwriter competition: Evidence from Japan. Journal of Financial Economics, 86(2), 369–404. doi: 10.1016/j.jfineco.2006.08.006.CrossRefGoogle Scholar
  97. Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Thousand Oaks, CA: Sage.Google Scholar
  98. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi: 10.1016/S0019-9958(65)90241-X.CrossRefGoogle Scholar
  99. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199–249. doi: 10.1016/0020-0255(75)90036-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mehrdokht Pournader
    • 1
    Email author
  • Andrew Kach
    • 2
  • Seyed Hossein Razavi Hajiagha
    • 3
  • Ali Emrouznejad
    • 4
  1. 1.Macquarie Graduate School of ManagementMacquarie UniversityMacquarie ParkAustralia
  2. 2.Atkinson Graduate School of ManagementWillamette UniversitySalemUSA
  3. 3.Department of ManagementKhatam UniversityTehranIran
  4. 4.Aston Business SchoolAston UniversityBirminghamUK

Personalised recommendations