Advertisement

Annals of Operations Research

, Volume 254, Issue 1–2, pp 365–399 | Cite as

Identification of customer groups in the German term life market: a benefit segmentation

  • Florian SchreiberEmail author
Original Paper
  • 567 Downloads

Abstract

We run a benefit segmentation of 2017 insurance consumers in order to analyze the structure and heterogeneity of the German term life insurance market. The consumers’ preference information has been obtained through a choice-based conjoint (CBC) experiment and a subsequent hierarchical Bayes (HB) estimation routine. Drawing on their part-worth utility profiles, we first construct a diverse cluster ensemble, comprising a total of 1624 hierarchical and k-means solutions based on different linkage criterions and sensibly drawn starting points. Then, final group memberships are determined by means of consensus clustering. Our empirical results indicate that the market divides into three segments characterized by substantially different consumer types with distinct demands and needs. While the first group is clearly driven by the premium, the opposite holds true for the brand-loyal group. Additionally, the market is completed by a third segment with in-between preference structures. Hence, both brand insurers and companies with a lower reputation face consumer groups that almost perfectly fit their provider profiles. More specifically, by offering segment-oriented products, an efficient resource allocation is fostered and the basis for long-term business relationships is laid. This is becoming increasingly important, because ongoing regulatory efforts, low interest rates, and market entrances from InsuranceTech start-ups and tech giants aiming to utilize the market’s enormous hidden potential are changing the competitive environment significantly. A consequent alignment of important strategic decisions related to product innovations, pricing, and distribution channels to our identified consumer segments enables incumbents to maintain a stable and sustainable market share and profitability.

Keywords

Benefit segmentation Term life insurance Consensus clustering 

JEL Classification

C38 C83 G22 M31 

References

  1. Aaker, D. A. (2013). Strategic marketing management (10th ed.). New York, NY: Wiley.Google Scholar
  2. Akaah, I. P. (1988). Cluster analysis versus Q-type factor analysis as a disaggregation method in hybrid conjoint modeling: An empirical investigation. Journal of the Academy of Marketing Science, 16(2), 11–18.CrossRefGoogle Scholar
  3. Andreasen, A. R. (1966). Geographic mobility and market segmentation. Journal of Marketing Research, 3(4), 341–348.CrossRefGoogle Scholar
  4. Auty, S. (1992). Consumer choice and segmentation in the restaurant industry. Service Industries Journal, 12(3), 324–339.CrossRefGoogle Scholar
  5. Bahn, K. D., & Granzin, K. L. (1985). Benefit segmentation in the restaurant industry. Journal of the Academy of Marketing Science, 13(3), 226–247.CrossRefGoogle Scholar
  6. Bass, F. M., Tigert, D. J., & Lonsdale, R. T. (1968). Market segmentation: Group versus individual behavior. Journal of Marketing Research, 5(3), 264–270.CrossRefGoogle Scholar
  7. Braun, A., Schmeiser, H., & Schreiber, F. (2016). On consumer preferences and the willingness to pay for term life insurance. European Journal of Operational Research, 253(3), 761–776.CrossRefGoogle Scholar
  8. Brouhns, N., Guillén, M., Denuit, M., & Pinquet, J. (2003). Bonus–Malus scales in segmented tariffs with stochastic migration between segments. Journal of Risk and Insurance, 70(4), 577–599.CrossRefGoogle Scholar
  9. Brown, J. D. (1992). Benefit segmentation of the fitness market. Health Marketing Quarterly, 9(3–4), 19–28.CrossRefGoogle Scholar
  10. CapGemini. (2016). Top 10 trends in insurance in 2016.Google Scholar
  11. Carrillat, F., Jaramillo, F., & Locander, W. (2004). Market-driving organizations: A framework. Academy of Marketing Science Review, 5(1), 1–14.Google Scholar
  12. Cattin, P., & Wittink, D. R. (1982). Commercial use of conjoint analysis: A survey. Journal of Marketing, 46(3), 44–53.CrossRefGoogle Scholar
  13. Cermak, D. S. P., File, K. M., & Prince, R. A. (1994). A benefit segmentation of the major donor market. Journal of Business Research, 29(2), 121–130.CrossRefGoogle Scholar
  14. Chang, T.-Z., & Chen, S.-J. (1995). Benefit segmentation: A useful tool for financial investment services. Journal of Professional Services Marketing, 12(2), 69–80.CrossRefGoogle Scholar
  15. Cormack, R. M. (1971). A review of classification. Journal of the Royal Statistical Society. Series A (General), 134(3), 321–367.CrossRefGoogle Scholar
  16. Cummings, R. G., Harrison, G. W., & Rutström, E. E. (1995). Homegrown values and hypothetical surveys: Is the dichotomous choice approach incentive-compatible? American Economic Review, 85(1), 260–266.Google Scholar
  17. Currim, I. S. (1981). Using segmentation approaches for better prediction and understanding from consumer mode choice models. Journal of Marketing Research, 18(3), 301–309.CrossRefGoogle Scholar
  18. Dahlby, B. (1983). Adverse selection and statistical discrimination: An analysis of canadian automobile insurance. Journal of Public Economics, 20(1), 121–130.CrossRefGoogle Scholar
  19. De Kluyver, C. A., & Whitlark, D. B. (1986). Benefit segmentation for industrial products. Industrial Marketing Management, 15(4), 273–286.CrossRefGoogle Scholar
  20. DeSarbo, W. S., & DeSarbo, C. F. (2007). A generalized normative segmentation methodology employing conjoint analysis. In A. Gustafsson, A. Herrmann & F. Huber (Eds.), Conjoint measurement—Methods and applications (4th ed, pp. 321–345). Springer, Berlin.Google Scholar
  21. DeSarbo, W. S., Oliver, R. L., & Rangaswamy, A. (1989). A simulated annealing methodology for clusterwise linear regression. Psychometrika, 54(4), 707–736.CrossRefGoogle Scholar
  22. DeSarbo, W. S., Ramaswamy, V., & Cohen, S. H. (1995). Market segmentation with choice-based conjoint analysis. Marketing Letters, 6(2), 137–147.CrossRefGoogle Scholar
  23. DeSarbo, W. S., Wedel, M., Vriens, M., & Ramaswamy, V. (1992). Latent class metric conjoint analysis. Marketing Letters, 3(3), 273–288.CrossRefGoogle Scholar
  24. Ding, M. (2007). An incentive-aligned mechanism for conjoint analysis. Journal of Marketing Research, 44(2), 214–223.CrossRefGoogle Scholar
  25. Ding, M., Grewal, R., & Liechty, J. (2005). Incentive-aligned conjoint analysis. Journal of Marketing Research, 42(1), 67–82.CrossRefGoogle Scholar
  26. Doyle, P. (1995). Marketing in the new millennium. European Journal of Marketing, 29(13), 23–41.CrossRefGoogle Scholar
  27. Epetimehin, F. M. (2011). Market segmentation: A tool for improving customer satisfaction and retention in insurance service delivery. Journal of Emerging Trends in Economics and Management Sciences, 2(1), 62–67.Google Scholar
  28. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of 2nd international conference on Knowledge Discovery and Data Mining (KDD-96) (pp. 226–231). Menio Park, CA: The AAAI Press.Google Scholar
  29. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Chichester, UK: Wiley.CrossRefGoogle Scholar
  30. Farmer, A. E., McGuffin, P., & Spitznagel, E. L. (1983). Heterogeneity in schizophrenia: A cluster-analytic approach. Psychiatry Research, 8(1), 1–12.CrossRefGoogle Scholar
  31. Farzanfar, E., & Delafrooz, N. (2016). Determining the customer lifetime value based on the benefit clustering in the insurance industry. Indian Journal of Science and Technology, 9(1), 1–8.Google Scholar
  32. Faúndez-Abans, M., Ormeño, M. I., & de Oliveira-Abans, M. (1996). Classification of planetary nebulae by cluster analysis and artificial neural networks. Astronomy and Astrophysics Supplement Series, 116(2), 395–402.CrossRefGoogle Scholar
  33. Finn, D. W., & Lamb, C. W, Jr. (1986). Hospital benefit segmentation. Journal of Health Care Marketing, 6(4), 26–33.Google Scholar
  34. Frank, R. E. (1967). Correlates of buying behavior for grocery products. Journal of Marketing, 31(4), 48–53.CrossRefGoogle Scholar
  35. Frank, R. E., Massy, W. F., & Wind, Y. (1972). Market segmentation (Prentice-Hall international series in management). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  36. Gordon, A. D. (1987). A review of hierarchical classification. Journal of the Royal Statistical Society. Series A (General), 150(2), 119–137.CrossRefGoogle Scholar
  37. Gower, J. C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3(1), 5–48.CrossRefGoogle Scholar
  38. Green, P. E. (1977). A new approach to market segmentation. Business Horizons, 20(1), 61–73.CrossRefGoogle Scholar
  39. Green, P. E., & DeSarbo, W. S. (1979). Componential segmentation in the analysis of consumer trade-offs. Journal of Marketing, 43(4), 83–91.CrossRefGoogle Scholar
  40. Green, P. E., & Krieger, A. M. (1991). Segmenting markets with conjoint analysis. Journal of Marketing, 55(4), 20–31.CrossRefGoogle Scholar
  41. Green, P. E., Krieger, A. M., & Wind, Y. J. (2001). Thirty years of conjoint analysis: Reflections and prospects. Interfaces, 31(3), 56–73.CrossRefGoogle Scholar
  42. Green, P. E., & Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data. Journal of Marketing Research, 8(3), 355–363.CrossRefGoogle Scholar
  43. Green, P. E., & Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, 5(2), 103–123.CrossRefGoogle Scholar
  44. Green, P. E., & Srinivasan, V. (1990). Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing, 54(4), 3–19.CrossRefGoogle Scholar
  45. Grossmann, M., McCarthy, R. V., & Aronson, J. E. (2004). E-commerce adoption in the insurance industry. Issues in Information Systems, 5(2), 467–473.Google Scholar
  46. Hagerty, M. R. (1985). Improving the predictive power of conjoint analysis: The use of factor analysis and cluster analysis. Journal of Marketing Research, 22(2), 168–184.CrossRefGoogle Scholar
  47. Haley, R. I. (1968). Benefit segmentation: A decision-oriented research tool. Journal of Marketing, 32(3), 30–35.CrossRefGoogle Scholar
  48. Haley, R. I. (1985). Developing effective communications strategy: A benefit segmentation approach. Wiley series on marketing management (1st ed.). New York, NY: Wiley.Google Scholar
  49. Harvey, J. W. (1990). Benefit segmentation for fund raisers. Journal of the Academy of Marketing Science, 18(1), 77–86.CrossRefGoogle Scholar
  50. Honkanen, P., Olsen, S. O., & Myrland, Ø. (2004). Preference-based segmentation: A study of meal preferences among norwegian teenagers. Journal of Consumer Behaviour, 3(3), 235–250.CrossRefGoogle Scholar
  51. Howe, N., & Strauss, W. (2000). Millennials rising: The next great generation. New York, NY: Vintage Books.Google Scholar
  52. Huber, J. (1997). What we have learned from 20 years of conjoint research: When to use self-explicated, graded pairs, full profiles, or choice experiments. Sawtooth Software Research Paper.Google Scholar
  53. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.CrossRefGoogle Scholar
  54. Jain, A. K. (2010). Data clustering: 50 years beyond \(k\)-means. Pattern Recognition Letters, 31(8), 651–666.CrossRefGoogle Scholar
  55. Jang, S. C., Morrison, A. M., & O’Leary, J. T. (2002). Benefit segmentation of Japanese pleasure travelers to the USA and Canada: Selecting target markets based on the profitability and risk of individual market segments. Tourism Management, 23(4), 367–378.CrossRefGoogle Scholar
  56. John, J., & Miaoulis, G. (1992). A model for understanding benefit segmentation in preventive health care. Health Care Management Review, 17(2), 21–32.CrossRefGoogle Scholar
  57. Johnson, L. W., Ringham, L., & Jurd, K. (1991). Behavioural segmentation in the australian wine market using conjoint choice analysis. International Marketing Review, 8(4), 26–31.CrossRefGoogle Scholar
  58. Johnson, R. (2000). Monotonicity constraints in choice-based conjoint with hierarchical Bayes. Sawtooth Software Research Paper.Google Scholar
  59. Kamakura, W. A. (1988). A least squares procedure for benefit segmentation with conjoint experiments. Journal of Marketing Research, 25(2), 157–167.CrossRefGoogle Scholar
  60. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis (1st ed.). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  61. Kinnaird, D., Shaughnessy, K., Struman, K., & Swinyard, W. (1984). Market segmentation of retail bank services: A model for management. Journal of Retail Banking, 6(4), 52–63.Google Scholar
  62. KPMG (2014). Transforming insurance: Securing competitive advantage.Google Scholar
  63. Lance, G. N., & Williams, W. T. (1967). A general theory of classificatory sorting strategies: 1. Hierarchical systems. The Computer Journal, 9(4), 373–380.CrossRefGoogle Scholar
  64. Littmann, T. (2000). An empirical classification of weather types in the mediterranean basin and their interrelation with rainfall. Theoretical and Applied Climatology, 66(3–4), 161–171.CrossRefGoogle Scholar
  65. Loker, L. E., & Perdue, R. R. (1992). A benefit-based segmentation of a nonresident summer travel market. Journal of Travel Research, 31(1), 30–35.CrossRefGoogle Scholar
  66. Louviere, J. J., & Woodworth, G. (1983). Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data. Journal of Marketing Research, 20(4), 350–367.CrossRefGoogle Scholar
  67. Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement. Journal of Mathematical Psychology, 1(1), 1–27.CrossRefGoogle Scholar
  68. Machauer, A., & Morgner, S. (2001). Segmentation of bank customers by expected benefits and attitudes. International Journal of Bank Marketing, 19(1), 6–18.CrossRefGoogle Scholar
  69. MacNaughton-Smith, P., Williams, W. T., Dale, M. B., & Mockett, L. G. (1964). Dissimilarity analysis: A new technique of hierarchical sub-division. Nature, 202(1), 1034–1035.CrossRefGoogle Scholar
  70. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. LeCam & J. Neymen (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). Berkeley, CA: University of California Press.Google Scholar
  71. Mao, J., & Jain, A. K. (1996). A self-organizing network for hyper-ellipsoidal clustering (HEC). IEEE Transactions on Neural Networks, 7(1), 16–29.CrossRefGoogle Scholar
  72. Mariorty, R. T., & Reibstein, D. J. (1986). Benefit segmentation in industrial markets. Journal of Business Research, 14(6), 463–486.CrossRefGoogle Scholar
  73. McQuitty, L. L. (1966). Similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological Measurement, 26(4), 825–831.CrossRefGoogle Scholar
  74. Miles, R. E., Snow, C. C., Meyer, A. D., & Coleman, H. J, Jr. (1978). Organizational strategy, structure, and process. The Academy of Management Review, 3(3), 546–562.Google Scholar
  75. Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45(3), 325–342.CrossRefGoogle Scholar
  76. Milligan, G. W., & Cooper, M. C. (1987). Methodology review: Clustering methods. Applied Psychological Measurement, 11(4), 329–354.CrossRefGoogle Scholar
  77. Myers, J. H. (1976). Benefit structure analysis: A new tool for product planning. Journal of Marketing, 40(4), 23–32.CrossRefGoogle Scholar
  78. Ogawa, K. (1987). An approach to simultaneous estimation and segmentation in conjoint analysis. Marketing Science, 6(1), 66–81.CrossRefGoogle Scholar
  79. Orme, B. K. (2010). Getting started with conjoint analysis: Strategies for product design and pricing research (2nd ed.). Madison, WI: Research Publishers LLC.Google Scholar
  80. Orme, B. K., & Johnson, R. (2008). Improving \(k\)-means cluster analysis: Ensemble analysis instead of highest reproducibility replicates. Sawtooth Software Research Paper.Google Scholar
  81. Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20(2), 134–148.CrossRefGoogle Scholar
  82. PWC. (2016). Opportunities await: How InsurTech is reshaping insurance.Google Scholar
  83. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.CrossRefGoogle Scholar
  84. Retzer, J., Alberg, S., & Yuan, J. (2009). Achieving consensus in cluster ensemble analysis. Sawtooth Software Research Paper.Google Scholar
  85. Retzer, J., & Shan, M. (2007). Cluster ensemble analysis and graphical depiction of cluster partitions. In Proceedings of the 2007 Sawtooth software conference, Sequim WA.Google Scholar
  86. Sattler, H., & Hartmann, A. (2008). Commercial use of conjoint analysis. In M. Höck & K.-I. Voigt (Eds.), Operations management in theorie und Praxis (1st ed., pp. 103–119). Wiesbaden: Gabler Edition Wissenschaft.CrossRefGoogle Scholar
  87. Sawtooth Software. (2013). CCEA v3. Software for Convergent Cluster and Ensemble Analysis Manual.Google Scholar
  88. Selinski, S., & Ickstadt, K. (2008). Cluster analysis of genetic and epidemiological data in molecular epidemiology. Journal of Toxicology and Environmental Health, 71(11–12), 835–844.CrossRefGoogle Scholar
  89. Seog, S. H. (2009). Insurance markets with differential information. Journal of Risk and Insurance, 76(2), 279–294.CrossRefGoogle Scholar
  90. Shoemaker, S. (1994). Segmenting the U.S. travel market according to benefits realized. Journal of Travel Research, 32(3), 8–21.CrossRefGoogle Scholar
  91. Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of Marketing, 21(1), 3–8.CrossRefGoogle Scholar
  92. Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38(2), 1409–1438.Google Scholar
  93. Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5(4), 1–34.Google Scholar
  94. Speed, R., & Smith, G. (1992). Retail financial services segmentation. Service Industries Journal, 12(3), 368–383.CrossRefGoogle Scholar
  95. Steenkamp, J.-B. E. M., & Wedel, M. (1993). Fuzzy clusterwise regression in benefit segmentation: Application and investigation into its validity. Journal of Business Research, 26(3), 237–249.CrossRefGoogle Scholar
  96. Steinley, D. (2004). Properties of the Hubert–Arabie adjusted rand index. Psychological Methods, 9(3), 386–396.CrossRefGoogle Scholar
  97. Strehl, A., & Ghosh, J. (2002). Cluster ensembles—A knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3(3), 583–617.Google Scholar
  98. Sutton, M. Q., & Reinhard, K. J. (1995). Cluster analysis of the coprolites from Antelope House: Implications for Anasazi diet and cuisine. Journal of Archaeological Science, 22(6), 741–750.CrossRefGoogle Scholar
  99. Swiss Re. (2013). Life insurance: Focusing on the consumer. Swiss Re Sigma 6/2013.Google Scholar
  100. Swiss Re. (2014). Term life insurance in Germany: The consumers’ perspective—A need for preferences-orientated product design? Swiss Re Economic Research and Consulting Report.Google Scholar
  101. ter Hofstede, F., Steenkamp, J.-B. E. M., & Wedel, M. (1999). International market segmentation based on consumer-product relations. Journal of Marketing Research, 36(1), 1–17.CrossRefGoogle Scholar
  102. Thomas, A., & Pickering, G. (2003). Behavioural segmentation: A New Zealand wine market application. Journal of Wine Research, 14(2–3), 127–138.CrossRefGoogle Scholar
  103. Twedt, D. W. (1964). Some practical applications of the ‘Heavy Half’ theory. In Advertising research foundation 10th annual conference, New York, NY.Google Scholar
  104. Vriens, M., Wedel, M., & Wilms, T. (1996). Metric conjoint segmentation methods: A Monte Carlo comparison. Journal of Marketing Research, 33(1), 73–85.CrossRefGoogle Scholar
  105. Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.CrossRefGoogle Scholar
  106. Wedel, M., & Kamakura, W. (2000). Market segmentation: Conceptual and methodological foundations (2nd ed.). Norwell, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
  107. Wedel, M., & Kistemaker, C. (1989). Consumer benefit segmentation using clusterwise linear regression. International Journal of Research in Marketing, 6(1), 45–59.CrossRefGoogle Scholar
  108. Wedel, M., & Steenkamp, J.-B. E. M. (1991). A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. Journal of Marketing Research, 28(4), 385–396.CrossRefGoogle Scholar
  109. Weinstein, A. (2002). Customer retention: A usage segmentation and customer value approach. Journal of Targeting, Measurement and Analysis for Marketing, 10(3), 259–268.CrossRefGoogle Scholar
  110. Wind, Y. (1978). Issues and advances in segmentation research. Journal of Marketing Research, 15(3), 317–337.CrossRefGoogle Scholar
  111. Wittink, D. R., & Cattin, P. (1989). Commercial use of conjoint analysis: An update. Journal of Marketing, 53(3), 91–96.CrossRefGoogle Scholar
  112. Wittink, D. R., Vriens, M., & Burhenne, W. (1994). Commercial use of conjoint analysis in Europe: Results and critical reflections. International Journal of Research in Marketing, 11(1), 41–52.CrossRefGoogle Scholar
  113. Woodside, A. G., & Jacobs, L. W. (1985). Step two in benefit segmentation: Learning the benefits realized by major travel markets. Journal of Travel Research, 24(1), 7–13.CrossRefGoogle Scholar
  114. Yankelovich, D. (1964). New criteria for market segmentation. Harvard Business Review, 42(2), 83–90.Google Scholar
  115. Yankelovich, D., & Meer, D. (2006). Rediscovering market segmentation. Harvard Business Review, 84(2), 122–131.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Insurance EconomicsUniversity of St. GallenSt. GallenSwitzerland

Personalised recommendations