Annals of Operations Research

, Volume 254, Issue 1–2, pp 17–36 | Cite as

On the ranking of a Swiss system chess team tournament

  • László CsatóEmail author
Original Paper


The paper suggests a family of paired comparison-based scoring procedures for ranking the participants of a Swiss system chess team tournament. We present the challenges of ranking in Swiss system, the features of individual and team competitions as well as the failures of the official rankings based on lexicographical order. The tournament is represented as a ranking problem such that the linearly-solvable row sum (score), generalized row sum, and least squares methods have favourable axiomatic properties. Two chess team European championships are analysed as case studies. Final rankings are compared by their distances and visualized with multidimensional scaling. Differences to the official ranking are revealed by the decomposition of the least squares method. Rankings are evaluated by prediction power, retrodictive performance, and stability. The paper argues for the use of least squares method with a results matrix favouring match points on the basis of its relative insensitivity to the choice between match and board points, retrodictive accuracy, and robustness.


Paired comparison Ranking Linear system of equations Swiss system Chess 



We are grateful to two anonymous referees for their valuable comments and suggestions. The research was supported by OTKA Grant K 111797 and by the MTA Premium Post Doctorate Research Program. This research was partially supported by Pallas Athene Domus Scientiae Foundation. The views expressed are those of the author’s and do not necessarily reflect the official opinion of Pallas Athene Domus Scientiae Foundation.


  1. Brozos-Vázquez, M., Campo-Cabana, M. A., Díaz-Ramos, J. C., & González-Díaz, J. (2010). Recursive tie-breaks for chess tournaments.
  2. Can, B. (2012). Weighted distances between preferences. Technical report RM/12/056, Maastricht University School of Business and Economics, Graduate School of Business and Economics.Google Scholar
  3. Can, B. (2014). Weighted distances between preferences. Journal of Mathematical Economics, 51, 109–115.CrossRefGoogle Scholar
  4. Can, B., & Storcken, T. (2013). A re-characterization of the Kemeny distance. Technical report RM/13/009, Maastricht University School of Business and Economics, Graduate School of Business and Economics.Google Scholar
  5. Chebotarev, P. (1989). Generalization of the row sum method for incomplete paired comparisons. Automation and Remote Control, 50(8), 1103–1113.Google Scholar
  6. Chebotarev, P. (1994). Aggregation of preferences by the generalized row sum method. Mathematical Social Sciences, 27(3), 293–320.CrossRefGoogle Scholar
  7. Chebotarev, P., & Shamis, E. (1998). Characterizations of scoring methods for preference aggregation. Annals of Operations Research, 80, 299–332.CrossRefGoogle Scholar
  8. Csató, L. (2012). A pairwise comparison approach to ranking in chess team championships. In P. Fülöp (Ed.), Tavaszi Szél 2012 Konferenciakötet (pp. 514–519). Budapest: Doktoranduszok Országos Szövetsége.Google Scholar
  9. Csató, L. (2013). Ranking by pairwise comparisons for Swiss-system tournaments. Central European Journal of Operations Research, 21(4), 783–803.CrossRefGoogle Scholar
  10. Csató, L. (2014). Additive and multiplicative properties of scoring methods for preference aggregation. Corvinus economics working papers 3/2014, Corvinus University of Budapest, Budapest.Google Scholar
  11. Csató, L. (2015). A graph interpretation of the least squares ranking method. Social Choice and Welfare, 44(1), 51–69.CrossRefGoogle Scholar
  12. Csató, L. (2016a). Ranking in Swiss system chess team tournaments.
  13. Csató, L. (2016b). An impossibility theorem for paired comparisons.
  14. David, H. A. (1987). Ranking from unbalanced paired-comparison data. Biometrika, 74(2), 432–436.CrossRefGoogle Scholar
  15. ECU. (2012). Tournament rules. ECU stands for European Chess Union.
  16. ECU. (2013). European team chess championship 2013. Tournament rules. ECU stands for European Chess Union.
  17. FIDE. (2015). Handbook. FIDE stands for Fédération Internationale des Échecs (World Chess Federation).
  18. Forlano, L. (2011). A new way to rank the players in a Swiss systems tournament.
  19. González-Díaz, J., Hendrickx, R., & Lohmann, E. (2014). Paired comparisons analysis: An axiomatic approach to ranking methods. Social Choice and Welfare, 42(1), 139–169.CrossRefGoogle Scholar
  20. Jeremic, V. M., & Radojicic, Z. (2010). A new approach in the evaluation of team chess championships rankings. Journal of Quantitative Analysis in Sports, 6(3). /jqas.2010.6.3.1257/jqas.2010.6.3.1257.xml.
  21. Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88(4), 577–591.Google Scholar
  22. Kemeny, J. G., & Snell, L. J., (1962). Preference ranking: An axiomatic approach. Mathematical models in the social sciences (pp. 9–23). New York: Ginn.Google Scholar
  23. Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills: Sage Publications.CrossRefGoogle Scholar
  24. Landau, E. (1895). Zur relativen Wertbemessung der Turnierresultate. Deutsches Wochenschach, 11, 366–369.Google Scholar
  25. Landau, E. (1914). Über Preisverteilung bei Spielturnieren. Zeitschrift für Mathematik und Physik, 63, 192–202.Google Scholar
  26. Leeflang, P. S. H., & van Praag, B. M. S. (1971). A procedure to estimate relative powers in binary contacts and an application to Dutch Football League results. Statistica Neerlandica, 25(1), 63–84.CrossRefGoogle Scholar
  27. Pasteur, R. D. (2010). When perfect isn’t good enough: Retrodictive rankings in college football. In J. A. Gallian (Ed.), Mathematics and Sports, Dolciani Mathematical Expositions 43 (pp. 131–146). Washington, DC: Mathematical Association of America.Google Scholar
  28. Redmond, C. (2003). A natural generalization of the win-loss rating system. Mathematics Magazine, 76(2), 119–126.CrossRefGoogle Scholar
  29. Shamis, E. (1994). Graph-theoretic interpretation of the generalized row sum method. Mathematical Social Sciences, 27(3), 321–333.CrossRefGoogle Scholar
  30. Stefani, R. T. (1980). Improved least squares football, basketball, and soccer predictions. IEEE Transactions on Systems, Man, and Cybernetics, 10(2), 116–123.CrossRefGoogle Scholar
  31. Zermelo, E. (1929). Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 29, 436–460.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratory on Engineering and Management Intelligence, Research Group of Operations Research, Institute for Computer Science and ControlHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary
  2. 2.Department of Operations Research and Actuarial SciencesCorvinus University of Budapest (BCE)BudapestHungary

Personalised recommendations