Annals of Operations Research

, Volume 254, Issue 1–2, pp 111–130 | Cite as

Proper balance between search towards and along Pareto front: biobjective TSP case study

  • Andrzej Jaszkiewicz
  • Thibaut LustEmail author
Original Paper


In this paper we propose simple yet efficient version of the two-phase Pareto local search (2PPLS) for solving the biobjective traveling salesman problem (bTSP). In the first phase the powerful Lin–Kernighan heuristic is used to generate some high quality solutions being very close to the Pareto front. Then Pareto local search is used to generate more potentially Pareto efficient solutions along the Pareto front. Instead of previously used method of Aneja and Nair we use uniformly distributed weight vectors in the first phase. We show experimentally that properly balancing the computational effort in the first and second phase we can obtain results better than previous versions of 2PPLS for bTSP and at least comparable to the state-of-the art results of more complex MOMAD method. Furthermore, we propose a simple extension of 2PPLS where some additional solutions are generated by Lin–Kernighan heuristic during the run of PLS. In this way we obtain a method that is more robust with respect to the number of initial solutions generated in the first phase.


Multiobjective optimization Pareto local search Traveling salesman problem 



The research of Andrzej Jaszkiewicz was funded by the the Polish National Science Center, Grant No. UMO-2013/11/B/ST6/01075.


  1. Aneja, Y., & Nair, K. (1979). Bicriteria transportation problem. Management Science, 25, 73–78.CrossRefGoogle Scholar
  2. Angel, E., Bampis, E., & Gourvès, L. (2004). A dynasearch neighborhood for the bicriteria traveling salesman problem. In X. Gandibleux, M. Sevaux, K. Sörensen, & V. T’kindt (Eds.), Metaheuristics for multiobjective optimisation. Lecture notes in economics and mathematical systems (Vol. 535, pp. 153–176). Berlin: Springer.CrossRefGoogle Scholar
  3. Applegate, D. (2003). Chained Lin–Kernighan for large traveling salesman problems. INFORMS Journal on Computing, 15, 82–92.CrossRefGoogle Scholar
  4. Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive search and intelligent optimization, operations research/Computer science interfaces. Berlin: Springer. (ISBN 978-0-387-096 23-0).Google Scholar
  5. Coello, C. A. C., & Cortés, N. C. (2005). Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines, 6, 163–190.CrossRefGoogle Scholar
  6. Czyzak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7, 34–47.CrossRefGoogle Scholar
  7. Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the parallel problem solving from nature VI conference. Lecture notes in computer science no. 1917 (pp. 849–858). Paris, France: Springer.Google Scholar
  8. Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin: Springer.Google Scholar
  9. Ehrgott, M., & Gandibleux, X. (2007). Bound sets for biobjective combinatorial optimization problems. Computers & Operations Research, 34, 2674–2694.CrossRefGoogle Scholar
  10. Ferguson, T. (1967). Mathematical statistics, a decision theoretic approach. New York: Academic Press.Google Scholar
  11. Hansen, M. P., & Jaszkiewicz, A. (1998). Evaluating the quality of approximations to the non-dominated set. Lyngby: IMM, Department of Mathematical Modelling, Technical University of Denmark.Google Scholar
  12. Jaszkiewicz, A. (2002). On the performance of multiple-objective genetic local search on the 0/1 knapsack problem—A comparative experiment. IEEE Transactions on Evolutionary Computation, 6, 402–412.CrossRefGoogle Scholar
  13. Jaszkiewicz, A. (2004). A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the Pareto memetic algorithm. Annals of Operations Research, 131, 135–158.CrossRefGoogle Scholar
  14. Jaszkiewicz, A., & Zielniewicz, P. (2009). Pareto memetic algorithm with path-relinking for biobjective traveling salesman problem. European Journal of Operational Research, 193, 885–890.CrossRefGoogle Scholar
  15. Laporte, G., & Osman, I. (1995). Routing problems: A bibliography. Annals of Operations Research, 61, 227–262.CrossRefGoogle Scholar
  16. Lara, A., Sanchez, G., Coello, C. C., & Schutze, O. (2010). HCS: A new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 14, 112–132.CrossRefGoogle Scholar
  17. Liangjun, K., Qingfu, Z., & Battiti, R. (2014). Hybridization of decomposition and local search for multiobjective optimization. IEEE Transactions on Cybernetics, 44, 1808–1820.CrossRefGoogle Scholar
  18. Lin, S., & Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21, 498–516.CrossRefGoogle Scholar
  19. Lust, T., & Jaszkiewicz, A. (2010). Speed-up techniques for solving large-scale biobjective TSP. Computers & Operations Research, 37, 521–533.CrossRefGoogle Scholar
  20. Lust, T., & Teghem, J. (2010). Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics, 16, 475–510.CrossRefGoogle Scholar
  21. Lust, T., & Teghem, J. (2012). The multiobjective multidimensional knapsack problem: A survey and a new approach. International Transactions in Operational Research, 19, 495–520.CrossRefGoogle Scholar
  22. Lust, T., & Tuyttens, D. (2014). Variable and large neighborhood search to solve the multiobjective set covering problem. Journal of Heuristics, 20, 165–188.CrossRefGoogle Scholar
  23. Paquete, L., Schiavinotto, T., & Stützle, T. (2007). On local optima in multiobjective combinatorial optimization problems. Annals of Operations Research, 156, 83–97.CrossRefGoogle Scholar
  24. Paquete, L., & Stutzle, T. (2006). A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. European Journal of Operational Research, 169, 943–959.CrossRefGoogle Scholar
  25. Steuer, R. (1986). Multiple criteria optimization: Theory, computation and applications. New York: Wiley.Google Scholar
  26. Ulungu, E., Teghem, J., Fortemps, P., & Tuyttens, D. (1999). MOSA method: A tool for solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis, 8, 221–236.CrossRefGoogle Scholar
  27. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, Zurich: Swiss Federal Institute of Technology (ETH).Google Scholar
  28. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C., & Grunert da Fonseca, V. (2002). Why quality assessment of multiobjective optimizers is difficult. In W. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, & N. Jonoska (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002) (pp. 666–673). San Francisco: Morgan Kaufmann Publishers.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Computing, Institute of Computing SciencePoznan University of TechnologyPoznanPoland
  2. 2.CNRS, LIP6, UMR 7606Sorbonne Universités, UPMC Universités Paris 06ParisFrance

Personalised recommendations