Skip to main content
Log in

Classifying readmissions to a cardiac intensive care unit

  • Data Mining and Analytics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Research has associated intensive care unit (ICU) readmissions with increased risk of morbidity and mortality. Readmitted patients are also exposed to complications as they are transferred between hospital units. Moreover, due to their unexpected nature, readmissions increase ICU costs and the complexity of managing ICUs. Existing studies on ICU readmissions have mainly used logistic regression for identifying patients who are more likely to be readmitted. However, such studies do not account for the imbalanced nature of the data where the class of interest (readmitted patients) is the minority group. This paper empirically compares three approaches for handling the imbalanced ICU readmissions data: misclassification cost ratio, synthetic minority oversampling technique (SMOTE), and random under-sampling. We used three classification techniques for identifying patients who are more likely to be readmitted to the ICU within the same hospital stay: support vector machines, C5.0, and logistic regression. We evaluated the classification performance of the three methods using recall, specificity, accuracy, F-measure, G-mean, confusion entropy, and area under the receiver operating characteristic curve. Our results showed that SMOTE is the best approach for addressing the imbalanced nature of the data. The sensitivity analysis identified prolonged ventilation, renal failure, and pneumonia as the top three predictors of ICU readmissions. Our findings can be used to develop a decision support tool to help ICU clinicians and administrators in identifying patients who are more likely to be readmitted and hence provide the patients with the appropriate care to minimize their risk of readmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Basti, E., Kuzey, C., & Delen, D. (2015). Analyzing initial public offerings’ short-term performance using decision trees and SVMs. Decision Support Systems, 73, 15–27.

    Article  Google Scholar 

  • Beckmann, U., Gillies, D. M., Berenholtz, S. M., Wu, A. W., & Pronovost, P. (2004). Incidents relating to the intra-hospital transfer of critically ill patients. Intensive Care Medicine, 30(8), 1579–1585.

    Article  Google Scholar 

  • Braxton, C. C., Reilly, P. M., & Schwab, C. W. (2000). The traveling intensive care unit patient: Road trips. Surgical Clinics of North America, 80(3), 949–956.

    Article  Google Scholar 

  • Bujlow, T., Riaz, T., & Pedersen, J. M. (2012). A method for classification of network traffic based on C5. 0 machine learning algorithm. In 2012 international conference on computing, networking and communications (ICNC), (pp. 237–241).

  • Campbell, A. J., Cook, J. A., Adey, G., & Cuthberston, B. H. (2008). Predicting death and readmission after intensive care discharge. British Journal of Anesthesia, 100(5), 656–662.

    Article  Google Scholar 

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

    Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

    Google Scholar 

  • Chawla, N. V., Japkowicz, N., & Kolcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor, 6(1), 1–6.

    Article  Google Scholar 

  • Cooper, G. S., Sirio, C. A., Rotondi, A. J., Shepardson, L. B., & Rosenthal, G. E. (1999). Are readmissions to the intensive care unit a useful measure of hospital performance? Medical care, 37(4), 399–408.

    Article  Google Scholar 

  • Elliott, M., Worral-Carter, L., & Page, K. (2014). Intensive care readmission: A contemporary review of the literature. Intensive and Critical Care Nursing, 30(3), 121–137.

    Article  Google Scholar 

  • Fakhry, S. M., Leon, S., Derderian, C., Al-Harakeh, H., & Ferguson, P. L. (2013). Intensive care unit bounce back in trauma patients: An analysis of unplanned returns to the intensive care unit. Journal of Trauma and Acute Care Surgery, 74(6), 1528–1533.

    Article  Google Scholar 

  • Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research, 9, 1871–1874.

    Google Scholar 

  • Fialho, A. S., Kaymak, U., Cismondi, F., Vieira, S. M., Reti, S. R., Sousa, J. M., & Finkelstein, S. N. (2013). Predicting intensive care unit readmissions using probabilistic fuzzy systems. In 2013 IEEE international conference on fuzzy systems (FUZZ), , (pp. 1–7).

  • Fialho, A. S., Cismondi, F., Vieira, S. M., Reti, S. R., Sousa, J. M., & Finkelstein, S. N. (2012). Data mining using clinical physiology at discharge to predict ICU readmissions. Expert Systems with Applications, 39(18), 13158–13165.

    Article  Google Scholar 

  • Garcia, M. N. M., Robledo, J. G., Gonzalez, F. M., Hernandez, F. S., & Barba, M. S. (2014). Machine learning methods for mortality prediction of polytraumatized patients in intensive care units—Dealing with imbalanced and high-dimensional data. In E. Corchado, J. A. Lozano, H. Quintián & H. Yin (Eds.), Intelligent data engineering and automated learning–IDEAL 2014 (pp. 309–317). Springer International Publishing.

  • Gorunescu, F. (2013). Data mining: Concepts, models and techniques. Berlin: Springer.

    Google Scholar 

  • Gruenberg, D. A., Shelton, W., Rose, S. L., Rutter, A. E., Socaris, S., & McGee, G. (2006). Factors influencing length of stay in the intensive care unit. American Journal of Critical Care, 15(5), 502–509.

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., & Friedman, J. (2009). The elements of statistical learning, (Vol. 2, No. 1). New York: Springer.

    Book  Google Scholar 

  • He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.

    Article  Google Scholar 

  • Japkwoicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.

    Google Scholar 

  • Jarden, R. J., & Quirke, S. (2010). Improving safety and documentation in intrahospital transport: Development of an intrahospital transport tool for critically ill patients. Intensive and Critical Care Nursing, 26(2), 101–107.

    Article  Google Scholar 

  • Kantardzic, M. (2011). Data mining: Concepts, models, methods, and algorithms. New York: Wiley.

    Book  Google Scholar 

  • Kleinbaum, D., Kupper, L., Nizam, A., & Rosenberg, E. (2013). Applied regression analysis and other multivariable methods (5th ed.). Boston: Cengage Learning.

    Google Scholar 

  • Lemnaru, C., & Potolea, R. (2012). Imbalanced classification problems: Systematic study, issues and best practices. In R. Zhang, J. Zhang, Z. Zhang, J. Filipe & J. Cordeiro (Eds.), Enterprise information systems (pp. 35–50). Berlin: Springer.

  • Litmathe, J., Kurt, M., Feindt, P., Gams, E., & Boeken, U. (2009). Predictors and outcome of ICU readmission after cardiac surgery. The Thoracic and Cardiovascular Surgeon, 57(07), 391–394.

    Article  Google Scholar 

  • Liu, Y., Loh, H. T., & Sun, A. (2009). Imbalanced text classification: A term weighting approach. Expert systems with Applications, 36(1), 690–701.

    Article  Google Scholar 

  • López, V., Fernández, A., Moreno-Torres, J. G., & Herrera, F. (2012). Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems with Applications, 39(7), 6585–6608.

    Article  Google Scholar 

  • Ouanes, I., Schwebel, C., Français, A., Bruel, C., Philippart, F., Vesin, A., et al. (2012). A model to predict short-term death or readmission after intensive care unit discharge. Journal of Critical Care, 27(4), 10.

    Article  Google Scholar 

  • Oztekin, A., Delen, D., Turkyilmaz, A., & Zaim, S. (2013). A machine learning-based usability evaluation method for eLearning systems. Decision Support Systems, 56, 63–73.

    Article  Google Scholar 

  • Pronovost, P. J., Needham, D. M., Waters, H., Birkmeyer, C. M., Calinawan, J. R., Birkmeyer, J. D., et al. (2004). Intensive care unit physician staffing: Financial modeling of the Leapfrog standard. Critical Care Medicine, 32(6), 1247–1253.

    Article  Google Scholar 

  • Renton, J., Pilcher, D. V., Santamaria, J. D., Stow, P., Bailey, M., Hart, G., et al. (2011). Factors associated with increased risk of readmission to intensive care in Australia. Intensive Care Medicine, 37(11), 1800–1808.

    Article  Google Scholar 

  • Roumani, Y. F., May, J. H., Strum, D. P., & Vargas, L. G. (2013). Classifying highly imbalanced ICU data. Healthcare Management Science, 16(2), 119–128.

    Article  Google Scholar 

  • Schorr, C. A. (2012). Fishing for answers to avoid intensive care unit readmissions: Are we reeling in a “catch 22”? Critical Care Medicine, 40(1), 295–296.

    Article  Google Scholar 

  • Seref, O., Razzaghi, T., & Xanthopoulos, P. (2014). Weighted relaxed support vector machines. Annals of Operations Research, 1, 1–37.

  • Sevim, C., Oztekin, A., Bali, O., Gumus, S., & Guresen, E. (2014). Developing an early warning system to predict currency crises. European Journal of Operational Research, 237(3), 1095–1104.

    Article  Google Scholar 

  • Shrivastava, H., Huddar, V., Bhattacharya, S., & Rajan, V. (2015). Classification with imbalance: A similarity-based method for predicting respiratory failure. In 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), (pp. 707–714).

  • Thongkam, J., Xu, G., Zhang, Y., & Huang, F. (2009). Toward breast cancer survivability prediction models through improving training space. Expert Systems with Applications, 36(10), 12200–12209.

    Article  Google Scholar 

  • Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering, 14(3), 659–665.

    Article  Google Scholar 

  • Visa, S., & Ralescu, A. (2005). Issues in mining imbalanced data sets—A review paper. Proceedings of the sixteenth midwest artificial intelligence and cognitive science conference, (pp. 67–73).

  • Voigt, L. P., Pastores, S. M., Raoof, N. D., Thaler, H. T., & Halpern, N. A. (2009). Review of a large clinical series: Intrahospital transport of critically ill patients: Outcomes, timing, and patterns. Journal of Intensive Care Medicine, 24(2), 108–115.

    Article  Google Scholar 

  • Wang, S., Jian, W., & Tsui, K.-L. (2010). Adjusted support vector machines based on a new loss function. Annals of Operations Research, 174(1), 83–101.

    Article  Google Scholar 

  • Wei, J. M., Yuan, X. J., Hu, Q. H., & Wang, S. Q. (2010). A novel measure for evaluating classifiers. Expert Systems with Applications, 37(5), 3799–3809.

    Article  Google Scholar 

  • Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.

    Article  Google Scholar 

  • Xanthopoulos, P., Pardalos, P., & Trafalis, T. B. (2012). Robust data mining. New York: Springer.

    Google Scholar 

  • Yen, S., & Lee, Y. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718–5727.

    Article  Google Scholar 

  • Zolfaghar, K., Verbiest, N., Agarwal, J., Meadem, N., Chin, S. C., Roy, S. B., & Reed, L. (2013). Predicting risk-of-readmission for congestive heart failure patients: A multi-layer approach. Preprint.

Download references

Acknowledgments

This research was partially supported by a 2015 Oakland University School of Business Administration Spring/Summer Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazan F. Roumani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumani, Y.F., Roumani, Y., Nwankpa, J.K. et al. Classifying readmissions to a cardiac intensive care unit. Ann Oper Res 263, 429–451 (2018). https://doi.org/10.1007/s10479-016-2350-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2350-x

Keywords

Navigation